Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.
Etmiss distribution for SRA1 and SRA2 after all selection requirements except those on Etmiss.
Etmiss distribution for SRA3 and SRA4 after all selection requirements except those on Etmiss.
Etmiss distribution for SRB after all selection requirements except those on Etmiss.
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.
Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
Distribution of missing transverse energy for SR-Gbb-B.
Distribution of missing transverse energy for SR-Gtt-0L-C.
Distribution of missing transverse energy for SR-Gtt-1L-A.
The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton--proton collision data at $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of $20$ fb$^{-1}$. The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the chargino decays to the LSP by emitting a $W$ boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the $W$ bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between $210$ and $640$ GeV decaying directly to a top quark and a massless LSP is excluded at $95$ % confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at $95$ % confidence level up to a mass of $500$ GeV for an LSP mass in the range of $100$ to $150$ GeV. Stringent exclusion limits are also derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model.
Expected and observed $H_{T,sig}^{miss}$ distribution for tN_med SR, before applying the $H_{T,sig}^{miss}>12$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed large-R jet mass distribution for tN_boost SR, before applying the large-R jet mass$>75$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Expected and observed b-jet multiplicity distribution for bCc_diag SR, before applying the b-jet multiplicity$=0$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.
Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.
Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
The results of a search for vector-like top quarks using events with exactly one lepton, at least four jets, and large missing transverse momentum are reported. The search is optimised for pair production of vector-like top quarks in the $Z(\rightarrow \! \! \nu \nu) \, t + X$ decay channel. LHC pp collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$. No significant excess over the Standard Model expectation is seen and upper limits on the production cross-section of a vector-like $T$ quark pair as a function of the $T$ quark mass are derived. The observed (expected) 95% CL lower limits on the $T$ mass are 870 GeV (890 GeV) for the weak-isospin singlet model, 1.05 TeV (1.06 TeV) for the weak-isospin doublet model and 1.16 TeV (1.17 TeV) for the pure $Zt$ decay mode. Limits are also set on the mass as a function of the decay branching ratios, excluding large parts of the parameter space for masses below 1 TeV.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for BR($T \rightarrow Zt$) = 100%.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for branching ratios according to the singlet model.
Expected and observed 95% CL upper limit on the cross-section times branching ratio for VLQ $T$ pair production as a function of the $T$ mass for branching ratios according to the doublet model. Contributions from the $X$ or $B$ quark in the $(X^{5/3}, T)$ or $(T, B)$ doublet models are neglected, leading to very conservative limits.
Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single, high transverse momentum lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 2.3 inverse femtobarns at sqrt(s) = 13 TeV, recorded by the CMS experiment at the LHC. The search focuses on processes leading to high jet multiplicities, such as gluino pair production with gluinos to t t-bar neutralino[1]. The quantity M[J], defined as the sum of the masses of the large-radius jets in the event, is used in conjunction with other kinematic variables to provide discrimination between signal and background and as a key part of the background estimation method. The observed event yields in the signal regions in data are consistent with those expected for standard model backgrounds, estimated from control regions in data. Exclusion limits are obtained for a simplified model corresponding to gluino pair production with three-body decays into top quarks and neutralinos. Gluinos with a mass below 1600 GeV are excluded at a 95% confidence level for scenarios with low neutralino[1] mass, and neutralinos with a mass below 800 GeV are excluded for a gluino mass of about 1300 GeV. For models with two-body gluino decays producing on-shell top squarks, the excluded region is only weakly sensitive to the top squark mass.
Interpretation of results in the T1tttt model. The colored regions show the upper limits (95\% CL) on the production cross section for $pp\rightarrow \tilde{g}\tilde{g},\tilde{g}\rightarrow t\bar{t}\tilde{\chi}^0_1$ in the $m_{\tilde{g}}$-$m_{\tilde{\chi}^0_1}$ plane.
Interpretation of results in the T1tttt model. The colored regions show the upper limits (95\% CL) on the production cross section for $pp\rightarrow \tilde{g}\tilde{g},\tilde{g}\rightarrow t\bar{t}\tilde{\chi}^0_1$ in the $m_{\tilde{g}}$-$m_{\tilde{\chi}^0_1}$ plane. The curve shows the observed limit on the corresponding SUSY particle masses obtained by comparing the excluded cross section with theoretical cross sections.
Interpretation of results in the T1tttt model. The colored regions show the upper limits (95\% CL) on the production cross section for $pp\rightarrow \tilde{g}\tilde{g},\tilde{g}\rightarrow t\bar{t}\tilde{\chi}^0_1$ in the $m_{\tilde{g}}$-$m_{\tilde{\chi}^0_1}$ plane. The curve shows the observed limit on the corresponding SUSY particle masses obtained by comparing the excluded cross section with $+1\sigma$ theoretical cross sections.