Date

Collaboration

Subject_areas

Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 109 (2024) 112011, 2024.
Inspire Record 2751932 DOI 10.17182/hepdata.136030

This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.

66 data tables match query

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

More…

Search For Higgs Boson Pair Production in the $\gamma\gamma b\bar{b}$ Final State using $pp$ Collision Data at $\sqrt{s}=8$ TeV from the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 081802, 2015.
Inspire Record 1301558 DOI 10.17182/hepdata.64171

Searches are performed for resonant and non-resonant Higgs boson pair production in the $\gamma\gamma b\bar{b}$ final state using 20 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non-resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow $X \to hh$ resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.

1 data table match query

A 95% CL upper limit on the cross section times branching ratio of a narrow resonance decaying to pairs of Higgs bosons as a function of MX (see text for more details). The measurement is made in the GAMMA GAMMA B BBAR final state.


Search for pair production of higgsinos in final states with at least three $b$-tagged jets in $\sqrt{s} = 13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092002, 2018.
Inspire Record 1677389 DOI 10.17182/hepdata.83418

A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.

16 data tables match query

Distribution of m(h1) for events passing the preselection criteria of the high-mass analysis.

Distribution of effective mass for events passing the preselection criteria of the high-mass analysis.

Exclusion limits on higgsino pair production. The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).

More…

Search for additional neutral MSSM Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 09 (2018) 007, 2018.
Inspire Record 1663234 DOI 10.17182/hepdata.83155

A search is presented for additional neutral Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at the LHC. The search is performed in the context of the minimal supersymmetric extension of the standard model (MSSM), using the data collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes production of the Higgs boson in association with b quarks. No significant deviation above the expected background is observed. Model-independent limits at 95% confidence level (CL) are set on the product of the branching fraction for the decay into $\tau$ leptons and the cross section for the production via gluon fusion or in association with b quarks. These limits range from 18 pb at 90 GeV to 3.5 fb at 3.2 TeV for gluon fusion and from 15 pb (at 90 GeV) to 2.5 fb (at 3.2 TeV) for production in association with b quarks, assuming a narrow width resonance. In the m$_{\text{h}}^{\text{mod+}}$ scenario these limits translate into a 95% CL exclusion of $\tan\beta>$ 6 for neutral Higgs boson masses below 250 GeV, where $\tan\beta$ is the ratio of the vacuum expectation values of the neutral components of the two Higgs doublets. The 95% CL exclusion contour reaches 1.6 TeV for $\tan\beta=$ 60.

6 data tables match query

Expected and observed 95% CL upper limits for the production of a single narrow resonance, $\phi$, with a mass between 90 GeV and 3.2 TeV via gluon-gluon fusion. This limit database corresponds to the values shown in Figure 7a of the paper.

Expected and observed 95% CL upper limits for the production of a single narrow resonance, $\phi$, with a mass between 90 GeV and 3.2 TeV in association with b-quarks. This limit database corresponds to the values shown in Figure 7b of the paper.

Scan of the likelihood function for the search in the $\tau\tau$ final state for a single narrow resonance, $\phi$, produced via gluon fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in 40000 points of the ($\sigma(gg\phi)\cdot B(\phi\rightarrow\tau\tau)$, $\sigma(bb\phi)\cdot B(\phi\rightarrow\tau\tau)$) plane. An asimov dataset constructed from the expectation of all backgrounds and the SM Higgs boson is tested against a background hypothesis including the SM Higgs boson. For further details and instructions, please have a look into the following README file http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-17-020/2D-likelihood-scans/README.txt. Selected examples of such a likelihood scan are given in Figure 8 of the paper.

More…

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables match query

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…

Search for Higgs boson pair production in the $b\bar{b} b\bar{b}$ final state from $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 412, 2015.
Inspire Record 1373912 DOI 10.17182/hepdata.69299

A search for Higgs boson pair production $pp \to hh$ is performed with 19.5 fb$^{-1}$ of proton--proton collision data at $\sqrt{s}=$ 8 TeV, which were recorded by the ATLAS detector at the Large Hadron Collider in 2012. The decay products of each Higgs boson are reconstructed as a high-momentum $b\bar{b}$ system with either a pair of small-radius jets or a single large-radius jet, the latter exploiting jet substructure techniques and associated $b$-tagged track-jets. No evidence for resonant or non-resonant Higgs boson pair production is observed. The data are interpreted in the context of the Randall--Sundrum model with a warped extra dimension as well as the two-Higgs-doublet model. An upper limit on the cross-section for $pp \to G^{*}_{\mathrm{KK}} \to hh \to b\bar{b} b\bar{b}$ of 3.2 (2.3) fb is set for a Kaluza--Klein graviton $G^{*}_{\mathrm{KK}}$ mass of 1.0 (1.5) TeV, at the 95\% confidence level. The search for non-resonant Standard Model $hh$ production sets an observed 95\% confidence level upper limit on the production cross-section $\sigma(pp \to hh \to b\bar{b}b\bar{b})$ of 202 fb, compared to a SM prediction of $\sigma(pp \to hh \to b\bar{b}b\bar{b}) = 3.6 \pm 0.5$ fb.

5 data tables match query

1D histogram of event yields as a function of reconstructed four-jet mass for the resolved analysis. The lower edge of the mass bin is given.

1D histogram of event yields as a function of reconstructed two-jet mass for the boosted analysis. The lower edge of the mass bin is given.

The observed 95\% C.L. limit for $pp\rightarrow G^{*}_{KK}\rightarrow hh\rightarrow b\bar{b}b\bar{b}$ in the bulk RS model with $k/\bar{M}_{Pl} = 1$, as a function of resonance mass.

More…

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 398-423, 2019.
Inspire Record 1709317 DOI 10.17182/hepdata.91235

A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.

2 data tables match query

Observed and expected upper limits at 95% CL on the product of the Higgs boson production cross section and B(h->aa->mumubb)

Observed and expected upper limits at 95% CL on the branching fraction of (h->aa->mumubb)


Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables match query

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…

Searches for heavy $ZZ$ and $ZW$ resonances in the $\ell\ell qq$ and $\nu\nu qq$ final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2018) 009, 2018.
Inspire Record 1620910 DOI 10.17182/hepdata.78550

This paper reports searches for heavy resonances decaying into $ZZ$ or $ZW$ using data from proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 36.1 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The searches are performed in final states in which one $Z$ boson decays into either a pair of light charged leptons (electrons and muons) or a pair of neutrinos, and the associated $W$ boson or the other $Z$ boson decays hadronically. No evidence of the production of heavy resonances is observed. Upper bounds on the production cross sections of heavy resonances times their decay branching ratios to $ZZ$ or $ZW$ are derived in the mass range 300--5000 GeV within the context of Standard Model extensions with additional Higgs bosons, a heavy vector triplet or warped extra dimensions. Production through gluon--gluon fusion, Drell--Yan or vector-boson fusion are considered, depending on the assumed model.

16 data tables match query

Selection acceptance times efficiency for ggF H -> Z Z -> llqq as a function of the Higgs boson mass, combining the HP and LP signal regions of the ZV -> llJ selection and the b-tagged and untagged regions of the ZV -> lljj selection.

Selection acceptance times efficiency for VBF H -> Z Z -> llqq as a function of the Higgs boson mass, combining the HP and LP signal regions of the ZV -> llJ selection and the b-tagged and untagged regions of the ZV -> lljj selection.

Selection acceptance times efficiency for ggF H -> Z Z -> vvqq as a function of the Higgs boson mass, combining the HP and LP signal regions.

More…

Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $Z$ boson in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 318-337, 2018.
Inspire Record 1620909 DOI 10.17182/hepdata.80461

A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying $Z$ boson in proton--proton collisions at $\sqrt{s} =$ 13 TeV is presented. This search uses 36.1 fb$^{-1}$ of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model $ZH$ production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass $m_H = $ 125 GeV. The corresponding limits on the production cross-section of the $ZH$ process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models.

13 data tables match query

Observed E<sub>T</sub><sup>miss</sup> distribution in the ee channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH &rarr; &#8467;&#8467; + inv signal distribution is shown with BR<sub>H &rarr; inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>&chi;</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.

Observed E<sub>T</sub><sup>miss</sup> distribution in the &mu;&mu; channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH &rarr; &#8467;&#8467; + inv signal distribution is shown with BR<sub>H &rarr; inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>&chi;</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.

DM exclusion limit in the two-dimensional phase space of WIMP mass m<sub>&chi;</sub> vs mediator mass m<sub>med</sub> determined using the combined ee+&mu;&mu; channel. Both the observed and expected limits are presented, and the 1&sigma; uncertainty band for the expected limits is also provided. Regions bounded by the limit curves are excluded at the 95% CL. The grey line labelled with "m<sub>med</sub> = 2m<sub>&chi;</sub>'' indicates the kinematic threshold where the mediator can decay on-shell into WIMPs, and the other grey line gives the perturbative limit (arXiv 1603.04156). The relic density line (arXiv 1603.04156) illustrates the combination of m<sub>&chi;</sub> and m<sub>med</sub> that would explain the observed DM relic density.

More…