Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

6 data tables match query

$J/\psi$ mean transversee momentum vs collision energy. $p_{\rm T}$ integration ranges are 0<$p_{\rm T}$<8 GeV/$c$ at $\sqrt{s}$ =2700 GeV, 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =5020, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =7000, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =8000 and 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =13000.

$J/\psi$ mean transversee momentum square vs collision energy. $p_{\rm T}$ integration ranges are 0<$p_{\rm T}$<8 GeV/$c$ at $\sqrt{s}$ =2700 GeV, 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =5020, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =7000, 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =8000 and 0<$p_{\rm T}$<20 GeV/$c$ at $\sqrt{s}$ =13000.

$\psi(2S)$ mean transversee momentum vs collision energy. $p_{\rm T}$ integration ranges are 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =7000, 0<$p_{\rm T}$<12 GeV/$c$ at $\sqrt{s}$ =8000 and 0<$p_{\rm T}$<16 GeV/$c$ at $\sqrt{s}$ =13000.

More…

Total Cross-Section for Hadronic Production by e+ e- Annihilation in the Total Center-Of-Mass Energy Range 1.42-GeV - 3.09-GeV

Bacci, C. ; Baldini Celio, R. ; Battistoni, G. ; et al.
Phys.Lett.B 86 (1979) 234-238, 1979.
Inspire Record 141722 DOI 10.17182/hepdata.27311

We report experimental results on the cross section for the reaction e + e − → hadrons as a function of the total c.m. energy in the range W = 1.42–3.09 GeV. The results, combined with those already existing below the charm threshold, clearly indicate a structure for R ( W ) = α ( e + e − → hadrons)/ α ( e + e − → μ + μ − ) in that energy region.

1 data table match query

THE ENERGY RANGES OF THE NEW DATA AND THE PREVIOUS (REVISED) DATA OVERLAP BETWEEN 1.9 AND 2.0 GEV. RADIATIVE CORRECTIONS HAVE BEEN APPLIED TO ALL DATA. THIS CROSS SECTION EXCLUDES TWO-BODY FINAL STATES.


Measurement of Hadronic Exclusive Cross-sections in $e^+ e^-$ Annihilation From 1.42-{GeV} to 2.20-{GeV}

Bacci, C. ; De Zorzi, G. ; Penso, G. ; et al.
Nucl.Phys.B 184 (1981) 31-39, 1981.
Inspire Record 158474 DOI 10.17182/hepdata.34278

Total cross sections for reactions e + e − → π + π − π 0 , π + π − π 0 , 2 π + 2 π − π 0 , 2 π + 2 π − 2 π 0 , 3 π + 3 π − have been measured in the total c.m. energy range 1.42–2.20 GeV. Partial R = σ had / σ σ + μ − values for two and four produced charged pions, and cross sections for positive and negative G -parity states are also reported.

1 data table match query

THE CROSS SECTIONS FOR PRODUCING AN ODD OR EVEN NUMBER OF PIONS CORRESPOND TO NEGATIVE OR POSITIVE G-PARITY FINAL STATES. CROSS SECTION FOR E+ E- --> PI+ PI+ PI+ PI- PI- PI- IS LESS THAN ABOUT 2 NB IN THIS ENERGY RANGE.


A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 621 (2002) 3-34, 2002.
Inspire Record 566751 DOI 10.17182/hepdata.48925

A study of strange particle production in muon neutrino charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles K0s, Lambda, AntiLambda have been measured. Mean multiplicities are reported as a function of the event kinematic variables Enu, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K0s and Lambda in the final state have been analyzed. Clear signals corresponding to K*+-, Sigma*+-, Xi- and Sigma0 have been observed.

2 data tables match query

Measured yields as a function of E, the neutrino energy.

Ratios of measured yields for K0S/LAMBDA and LAMBDA/LAMBDABAR as a functionof E, the neutrino energy.


Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

9 data tables match query

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 20-60% centrality range.

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 2.76 TeV as a function of PT in the 0-20% centrality range.

More…

Deep inelastic scattering with leading protons or large rapidity gaps at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 816 (2009) 1-61, 2009.
Inspire Record 804915 DOI 10.17182/hepdata.52860

The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40&lt;W&lt;240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.

2 data tables match query

The reduced diffractive cross sections obtained from the LPS data as a function of X(NAME=POMERON) for Q**2 = 3.9 GeV**2 and ABS(T) = 0.19 to 0.55 GeV**2 for M(X) values of 3, 7, 15 and 30 GeV.

The reduced diffractive cross sections obtained from the LRG data as a function of X(NAME=POMERON) for Q**2 = 22 GeV**2 and M(X) values of 3, 6, 11, 19 and 32 GeV.


Evidence of a broad structure at an invariant mass of 4.32- GeV/c**2 in the reaction e+ e- ---> pi+ pi- psi(2S) measured at BaBar

The BaBar collaboration Aubert, Bernard ; Barate, R. ; Bona, M. ; et al.
Phys.Rev.Lett. 98 (2007) 212001, 2007.
Inspire Record 729388 DOI 10.17182/hepdata.19344

We present a measurement of the cross section of the process $e^+e^-\to\pi^+pi^-\psi(2S)$ from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the PEP-II $e^+e^-$ storage rings. The study is based on 298 fb$^{-1}$ of data recorded with the BaBar detector. A structure is observed in the cross-section not far above threshold, near 4.32 GeV. We also investigate the compatibility of this structure with the Y(4260) previously reported by this experiment.

1 data table match query

The measured c.m. energy dependence of the cross section with statistical errors only.. Bins with no recorded data are shown as a 'dash'.


Two Jet Differential Cross-Section in anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 157, 1990.
Inspire Record 283353 DOI 10.17182/hepdata.19998

The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.

6 data tables match query

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

More…

$R$ value measurements for $e^+e^-$ annihilation at 2.60, 3.07 and 3.65 GeV

The BES collaboration Ablikim, M. ; Bai, J.Z. ; Bai, Y. ; et al.
Phys.Lett.B 677 (2009) 239-245, 2009.
Inspire Record 814778 DOI 10.17182/hepdata.51953

Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.

1 data table match query

R values.


Observation of an ABC effect in proton-proton collisions

Dymov, S. ; Hartmann, M. ; Kacharava, A. ; et al.
Phys.Rev.Lett. 102 (2009) 192301, 2009.
Inspire Record 812534 DOI 10.17182/hepdata.51593

The cross section for inclusive multipion production in the pp->ppX reaction was measured at COSY-ANKE at four beam energies, 0.8, 1.1, 1.4, and 2.0 GeV, for low excitation energy in the final pp system, such that the diproton quasi-particle is in the 1S0 state. At the three higher energies the missing mass Mx spectra show a strong enhancement at low Mx, corresponding to an ABC effect that moves steadily to larger values as the energy is increased. Despite the missing-mass structure looking very different at 0.8 GeV, the variation with Mx and beam energy are consistent with two-pion production being mediated through the excitation of two Delta(1232) isobars, coupled to S-- and D-- states of the initial pp system.

4 data tables match query

The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 0.8 GeV.

The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 1.1 GeV.

The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 1.4 GeV.

More…