pi+-, K+-, p and anti-p production in Z0 --> q anti-q, Z0 --> b anti-b, Z0 --> u anti-u, d anti-d, s anti-s.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 5 (1998) 585-620, 1998.
Inspire Record 473409 DOI 10.17182/hepdata.49385

The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto

1 data table match query

Differential cross section for P PBAR in Z0-->Q-QBAR events.


The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C(A)/C(F).

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 383-400, 1999.
Inspire Record 495414 DOI 10.17182/hepdata.49173

Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.062 (stat.) \pm 0.080 (syst.) \pm 0.095 (theo.)

1 data table match query

Charged multiplicity in events with a hard photon, as a function of the apparent centre-of-mass energy (SQRT(S)) of the hadronic system. The errors shown are statistical only.


Di-jet production in gamma-gamma collisions at LEP2

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 58 (2008) 531-541, 2008.
Inspire Record 806241 DOI 10.17182/hepdata.51688

The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.

4 data tables match query

Distribution of the total energy outside the reconstructed jets for the completed data samples. Also tabulated is the estimated background.

Distribution of the total energy outside the reconstructed jets for the 'Dir' domain. Also tabulated is the estimated background.

Distribution of the total energy outside the reconstructed jets for the 'SR' domain. Also tabulated is the estimated background.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

4 data tables match query

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

15 data tables match query

Energy Energy Correlation EEC.

Asymmetry of the Energy Energy Correlation AEEC.

Jet Cone Energy Fraction.

More…

Determination of $alpha_{s}$ in second order {QCD} from hadronic $Z$ decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 54 (1992) 55-74, 1992.
Inspire Record 333272 DOI 10.17182/hepdata.14603

Distributions of event shape variables obtained from 120600 hadronicZ decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model.

2 data tables match query

The energy-energy correlation EEC as a function of the correlation angle CHI.

The energy-energy correlation EEC as a function of the correlation angle CHI.


Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

1 data table match query

5-jet rate for the Durham Algorithm.


Charged and Identified Particles in the Hadronic Decay of W Bosons and in e+e- -> q qbar from 130 to 200 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 18 (2000) 203-228, 2000.
Inspire Record 526164 DOI 10.17182/hepdata.43294

Inclusive distributions of charged particles in hadronic W decays are experimentally investigated using the statistics collected by the DELPHI experiment at LEP during 1997, 1998 and 1999, at centre-of-mass energies from 183 to around 200 GeV. The possible effects of interconnection between the hadronic decays of two Ws are not observed. Measurements of the average multiplicity for charged and identified particles in q qbar and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented. The results on the average multiplicity of identified particles and on the position xi^* of the maximum of the xi_p = -log(2p/sqrt(s)) distribution are compared with predictions of JETSET and MLLA calculations.

12 data tables match query

Average multiplicities of identified hadrons produced in fully hadronic (4Q) and semi-leptonic (2Q) W decays at a centre-of-mass energy of 189 GeV.

Corrected momentum distributions of charged particles for 4Q and 2Q events at a centre-of-mass energy 189 GeV.

The difference (4Q-2*2Q) between the fully hadronic and semileptonic momentum distributions at a centre-of-mass energy 189 GeV.

More…