Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 009, 2016.
Inspire Record 1467454 DOI 10.17182/hepdata.75023

This paper presents a measurement of the double-differential cross section for the Drell-Yan $Z/\gamma^{*} \rightarrow \ell^{+} \ell^{-}$ and photon-induced $\gamma\gamma \rightarrow \ell^{+} \ell^{-}$ processes where $\ell$ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, $m_{\ell\ell}$, between 116 GeV and 1500 GeV, using a sample of 20.3 fb$^{-1}$ of pp collisions data at centre-of-mass energy of $\sqrt{s}$ = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of $m_{\ell\ell}$ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low $m_{\ell\ell}$. A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated.

14 data tables match query

The electron channel Born-level single-differential cross section DSIG/DM. The measurements are listed together with the statistical uncertainties. In addition the contributions from the individual correlated (cor) and uncorrelated (unc) systematic error sources are also provided consisting of the trigger efficiency (trig), electron reconstruction efficiency (reco), electron identification efficiency (id), the isolation efficiency (iso), the electron energy resolution (Eres), the electron energy scale (Escale), the multijet and W+jets background (mult.), the top and diboson background normalisation (top, diboson), the top and diboson background MC statistical uncertainty (bgMC), the signal MC statistical uncertainty (MC), and the luminosity uncertainty (lumi). The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-". The ratio of the dressed-level to Born-level predictions (kDressed) is also provided.

The electron channel Born-level double-differential cross section D2SIG/DM/DABSYRAP. The measurements are listed together with the statistical uncertainties. In addition the contributions from the individual correlated (cor) and uncorrelated (unc) systematic error sources are also provided consisting of the trigger efficiency (trig), electron reconstruction efficiency (reco), electron identification efficiency (id), the isolation efficiency (iso), the electron energy resolution (Eres), the electron energy scale (Escale), the multijet and W+jets background (mult.), the top and diboson background normalisation (top, diboson), the top and diboson background MC statistical uncertainty (bgMC), the signal MC statistical uncertainty (MC), and the luminosity uncertainty (lumi). The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-". The ratio of the dressed-level to Born-level predictions (kDressed) is also provided.

The electron channel Born-level double-differential cross section D2SIG/DM/DABSDETA. The measurements are listed together with the statistical uncertainties. In addition the contributions from the individual correlated (cor) and uncorrelated (unc) systematic error sources are also provided consisting of the trigger efficiency (trig), electron reconstruction efficiency (reco), electron identification efficiency (id), the isolation efficiency (iso), the electron energy resolution (Eres), the electron energy scale (Escale), the multijet and W+jets background (mult.), the top and diboson background normalisation (top, diboson), the top and diboson background MC statistical uncertainty (bgMC), the signal MC statistical uncertainty (MC), and the luminosity uncertainty (lumi). The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-". The ratio of the dressed-level to Born-level predictions (kDressed) is also provided.

More…

Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 052005, 2018.
Inspire Record 1654582 DOI 10.17182/hepdata.83417

Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector bosonor a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of $0.99 \pm 0.14$ improves on the precision of the ATLAS measurement at $\sqrt{s} = 7$ and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be $55 \pm 10$ fb, which is in good agreement with the Standard Model prediction of $64 \pm 2$ fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. No significant deviations from a wide array of Standard Model predictions are observed.

1 data table match query

Measured differential cross section with associated uncertainties as a function of PT(2GAMMA) [NJET=1,PT>30 GEV]. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.


High-$E_{\rm T}$ isolated-photon plus jets production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nucl.Phys.B 918 (2017) 257-316, 2017.
Inspire Record 1499475 DOI 10.17182/hepdata.79948

The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

1 data table match query

Measured cross sections for isolated-photon plus 2jet production as a function of $\beta^{\rm jet1}$.


Measurement of the dijet mass distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 998-1008, 1993.
Inspire Record 353889 DOI 10.17182/hepdata.22573

The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.

2 data tables match query

Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.

Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.


Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

1 data table match query

Diffractive structure function F2(D3).


Diffractive dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 5 (1998) 41-56, 1998.
Inspire Record 469534 DOI 10.17182/hepdata.44302

Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.

3 data tables match query

Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.

Differential cross section as a function of X_gamma=(ET(JET1)*EXP(-ETARAP( JET1)) + ET(JET2)*EXP(-ETARAP(JET2)))/ (2*Y*E), the fraction of the photon momentum carried by the highest E_t jets. E is the incident positron energy.

Differential cross section as a function of BETA = (ET(JET1)*EXP(-ETARAP(J ET1)) + ET(JET2)*EXP(-ETARAP(JET2)))/ (2*XPOMERON*E_p), the fraction of the photon momentum carried by the highest E_t jets. E_p is the incident proton energy.


Substructure dependence of jet cross sections at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Loizides, J.H. ; et al.
Nucl.Phys.B 700 (2004) 3-50, 2004.
Inspire Record 650732 DOI 10.17182/hepdata.46136

Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.

1 data table match query

Measured differential cross section DSIG/DETARAP for inclusive jet production in DIS with ET(C=JET) > 17 GeV. Jets are divided into BROAD and NARROW jets according to their shape.


Cascade production in the reactions gamma p --> K+ K+ (X) and gamma p --> K^+ K^+ pi- (X)

Guo, L. ; Weygand, D.P. ; Battaglieri, M. ; et al.
Phys.Rev.C 76 (2007) 025208, 2007.
Inspire Record 744487 DOI 10.17182/hepdata.31494

Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.

45 data tables match query

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.

More…

Measurement of dijet cross-sections in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 13-23, 2002.
Inspire Record 581409 DOI 10.17182/hepdata.46764

Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05<x_p<0.6 and 0.1<x_gamma<1. The predictions of next-to-leading order perturbative QCD, including recent photon and proton parton densities, are found to be compatible with the data in a wide kinematical range.

4 data tables match query

Differential ep cross section for dijet production as a function of the average transverse energy the two jets.

Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.

Differential ep cross section for dijet production as a function of the average pseudorapidity the two jets in two transverse energy regions and in the Y region 0.1 to 0.5.

More…

Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

1 data table match query

The measured values of ALPHA_S determined from the QCD fit to the measured dijet fraction. The first systematic (DSYS) error is the systematic uncertainty not associated with the energy scales of the jets, the second is associated with the energy scales and the third DSYS error is the total theoretical uncertainty.