Measurement of Feynman-$x$ Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 74 (2014) 2915, 2014.
Inspire Record 1288065 DOI 10.17182/hepdata.64481

Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $ep$ scattering at HERA are presented as a function of the Feynman variable $x_F$ and of the centre-of-mass energy of the virtual photon-proton system $W$. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $131 \mathrm{pb}^{-1}$. The measurement is restricted to photons and neutrons in the pseudorapidity range $\eta>7.9$ and covers the range of negative four momentum transfer squared at the positron vertex $6<Q^2<100$ GeV$^2$, of inelasticity $0.05<y<0.6$ and of $70<W<245 $GeV. To test the Feynman scaling hypothesis the $W$ dependence of the $x_F$ dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

4 data tables match query

The fraction of DIS events with forward photons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

The fraction of DIS events with forward neutrons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

Normalised cross sections of forward photon production in DIS as a function of XF. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

More…

Exclusive $\rho^0$ Meson Photoproduction with a Leading Neutron at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 76 (2016) 41, 2016.
Inspire Record 1387751 DOI 10.17182/hepdata.74219

A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.

3 data tables match query

The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.

Energy dependence of the exclusive photoproduction of a $\rho^0$ meson associated with a leading neutron, $\gamma p \to \rho^0 n \pi^+$. The first uncertainty is statistical and the second is systematic. The global normalisation uncertainty of $4.4\%$ is not included. $\Phi_{\gamma}$ is the integral of the photon flux, Eq. (3) of paper, in a given $W_{\gamma p}$ bin.

Energy dependence of elastic $\rho^0$ photoproduction on the pion, $\gamma \pi^+ \to \rho^0 \pi^+$, extracted in the one-pion-exchange approximation using OPE1 sample. The first uncertainty represents the full experimental error and the second is the model error coming from the pion flux uncertainty (see text). $\Gamma_\pi(x_L)$ represents the value of the pion flux, Eqs. (5-6) of paper, integrated over the $p_{T,n}<0.2$ GeV range, at a given $x_L$.


Diffractive Dijet Production with a Leading Proton in $ep$ Collisions at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
JHEP 05 (2015) 056, 2015.
Inspire Record 1343110 DOI 10.17182/hepdata.73234

The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.

1 data table match query

Ratios of differential diffractive dijet $ep$ cross sections, measured in photoproduction, to measurements in DIS as a function of the variable $z_{I\!\!P}$. The hadronisation correction factors ($1+\delta_{\text{hadr}}$) applied to the NLO calculations are given.


A Measurement and QCD Analysis of the Proton Structure Function $F_2(x,Q~2)$ at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 470 (1996) 3-40, 1996.
Inspire Record 416819 DOI 10.17182/hepdata.44781

A new measurement of the proton structure function $F_2(x,Q~2)$ is reported for momentum transfers squared $Q~2$ between 1.5GeV$~2$ and 5000GeV$~2$ and for Bjorken $x$ between $3\cdot 10~{-5}$ and $0.32$ using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low $Q~2$ and $x$ has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing $x$, even in the lowest accessible $Q~2$ region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

1 data table match query

Data from normal vertex sample.


A Study of the fragmentation of quarks in e- p collisions at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 445 (1995) 3-21, 1995.
Inspire Record 394793 DOI 10.17182/hepdata.44978

Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of \ee data. It is shown that certain aspects of the quarks emerging from within the proton in \ep interactions are essentially the same as those of quarks pair-created from the vacuum in \ee annihilation. The measured area, peak position and widthof the fragmentation function show that the kinematic evolution variable, equivalent to the \ee squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in parton showers.

5 data tables match query

Distribution of the cosine of the Breit frame polar angle for data with the Breit frame energy flow selection. Statistical errors only.

Distribution of the cosine of the Breit frame polar angle for data before the Breit frame energy flow selection. Statistical errors only.

The fragmentation function for the current hemisphere of the Breit frame. Data are Breit frame energy flow selected only. Statistical errors only.

More…

Di-jet event rates in deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 13 (2000) 415-426, 2000.
Inspire Record 472305 DOI 10.17182/hepdata.44322

Di-jet event rates have been measured for deep-inelastic scattering in the kinematic domain ~5 < Q^2 < ~100 GeV^2 and ~10^(-4) < x_Bj < ~10^(-2), and for jet transverse momenta squared p_t^2 > ~Q^2. The analysis is based on data collected with the H1 detector at HERA in 1994 corresponding to an integrated luminosity of about 2 pb^(-1). Jets are defined using a cone algorithm in the photon-proton centre of mass system requiring jet transverse momenta of at least 5 GeV. The di-jet event rates are shown as a function of Q^2 and x_Bj. Leading order models of point-like interacting photons fail to describe the data. Models which add resolved interacting photons or which implement the colour dipole model give a good description of the di-jet event rate. This is also the case for next-to-leading order calculations including contributions from direct and resolved photons.

4 data tables match query

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

Di-jet rates for 'Sum' scenario for jet energy cuts.

Di-jet rates for 'Symmetric' and 'Asymmetric' scenarios for jet energy cuts.

More…

Evolution of e p fragmentation and multiplicity distributions in the Breit frame.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 504 (1997) 3-23, 1997.
Inspire Record 445116 DOI 10.17182/hepdata.44587

Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken-x and Q^2, and KNO scaling is discussed.

11 data tables match query

The average charged multiplicity, and the peak and width of the fragmentation function (in LN(1/XP)) as a function of the mean Q, for the total hemisphere of the Breit frame without the energy flow selection discussed in the text of the paper.

The average charged multiplicity, and the peak and width of the fragmentation function (in LN(1/XP)) as a function of the mean Q, with the energy flow selection, obtained from the Total Current Hemisphere sample.

Invariant charged hadron energy spectrum in the current hemisphere for a mean Q of 5.5. Results are given for all the data and for the energy flow selecteddata.

More…

Hadron production in diffractive deep-inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 428 (1998) 206-220, 1998.
Inspire Record 468748 DOI 10.17182/hepdata.44324

Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.

3 data tables match query

Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.

Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.

Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.


Low Q**2 jet production at HERA and virtual photon structure.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 415 (1997) 418-434, 1997.
Inspire Record 448449 DOI 10.17182/hepdata.44498

The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.

1 data table match query

The inclusive virtual photon-proton jet cross section.


Measurement of charged particle transverse momentum spectra in deep inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 485 (1997) 3-24, 1997.
Inspire Record 424463 DOI 10.17182/hepdata.44710

Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

1 data table match query

Charged particle PTMAX distribution in the pseudorapidity interval 0.5 to 1.5.