$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

1 data table match query

No description provided.


Amalgamation of Meson - Nucleon Scattering Data

Kelly, R.L. ; Cutkosky, R.E. ;
Phys.Rev.D 20 (1979) 2782, 1979.
Inspire Record 140207 DOI 10.17182/hepdata.76310

We present a series of numerical and statistical techniques for interpolating and combining ("amalgamating") data from meson-nucleon scattering experiments. These techniques have been extensively applied to πp elastic and charge-exchange differential-cross-section and polarization data in the resonance region. The amalgamation is done by fitting a momentum- and angle-dependent interpolating surface to the data over a moderately narrow momentum range, typically ∼150 MeV/c, using the interpolating surface to shift data in a narrower central momentum region into fixed angular bins at a predetermined central momentum, and then statistically combining the data in each bin. The fitting procedure takes into account normalization errors, momentum calibration errors, momentum resolution, electromagnetic corrections, threshold structure, and inconsistencies among the data. The full covariance matrix of the amalgamated data is calculated, including contributions of statistical error, systematic error, and interpolation error. Techniques are presented for extracting from the covariance matrix information on the collective statistical fluctuations which correlate the errors of the amalgamated data. These fluctuations are described in terms of "correlation vectors" which facilitate the use of the amalgamated data as input for resonance-region phenomenology.

1 data table match query

No description provided.


Measurement of Neutrino - Proton and anti-neutrino - Proton Elastic Scattering

Ahrens, L.A. ; Aronson, S.H. ; Connolly, P.L. ; et al.
Phys.Rev.D 35 (1987) 785, 1987.
Inspire Record 18763 DOI 10.17182/hepdata.23350

Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).

1 data table match query

Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.


Neutron-Proton Charge-Exchange Scattering Between 600-MeV/c and 2000-MeV/c

Shepard, P.F. ; Devlin, T.J. ; Mischke, R.E. ; et al.
Phys.Rev.D 10 (1974) 2735, 1974.
Inspire Record 89841 DOI 10.17182/hepdata.5223

n−p elastic differential cross sections in the charge-exchange region have been measured for incident neutron momenta between 600 and 2000 MeV/c. The momentum of neutrons incident on a liquid-H2 target was determined by a measurement of flight time over a 32.9-m flight path. The momentum and scattering angles of the recoil proton were measured by a wire-spark-chamber magnetic spectrometer. Approximately 450 000 elastic events were detected for proton laboratory angles between 0° and 62°. Differential cross sections are presented at 16 energies. An absolute normalization of the cross sections was achieved by measuring the incident neutron flux with a detector whose efficiency was determined experimentally.

1 data table match query

No description provided.


Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

1 data table match query

No description provided.


Polarization Measurements in pi+ p Elastic Scattering from 0.6-GeV/c to 2.65-GeV/c

Martin, J.F. ; Sleeman, J.C. ; Brown, Robert M. ; et al.
Nucl.Phys.B 89 (1975) 253-286, 1975.
Inspire Record 90870 DOI 10.17182/hepdata.6743

This paper presents the results of a counter experiment at the Rutherford Laboratory, in which the polarization parameter in π + p elastic scattering was measured. Data were taken at 64 incident pion momenta between 0.60 and 2.65 GeV/ c . The results are found to be in generally good agreement with those of other experiments, and have substantially higher precision at many momenta.

1 data table match query

No description provided.


Proton proton differential cross-sections from 600 to 1800 mev/c

Ryan, B.A. ; Kanofsky, A. ; Devlin, T.J. ; et al.
Phys.Rev.D 3 (1971) 1-9, 1971.
Inspire Record 68275 DOI 10.17182/hepdata.23725

Proton-proton elastic differential cross sections have been measured for incident laboratory momenta of 600-1800 MeVc and c.m. angles of 5°-90°. The data span, in a single experiment, the intermediate energy region from isotropic differential cross sections at lower energies to the development of a clear diffraction peak at higher energies. Parameters for phenomenological formulations derived from the experimental results are presented.

1 data table match query

No description provided.


Real Parts of the Pion-Proton Forward Scattering Amplitude

Engelmann, T.R. ; Hendrick, R.E. ;
Phys.Rev.D 16 (1977) 2891, 1977.
Inspire Record 119142 DOI 10.17182/hepdata.75552

The most recent total-cross-section data are used to calculate real parts of the forward elastic π±p scattering amplitudes from threshold to 240 GeV/c. Using statistical and systematic uncertainties of the total cross sections and their momenta, along with uncertainties of the subtraction and coupling constants, unphysical cuts, and cross-section extrapolations, we calculate the uncertainties of the real amplitudes. Our results are compared to experimental and other theoretical determinations of the π±p forward real amplitudes.

1 data table match query

No description provided.


Scattering of $\pi^-$ Mesons in the Momentum Range 0.643-{GeV}/$c$ to 2.14-{GeV}/$c$ From a Polarized Proton Target

Cox, C.R. ; Duke, P.J. ; Heard, K.S. ; et al.
Phys.Rev. 184 (1969) 1453, 1969.
Inspire Record 18772 DOI 10.17182/hepdata.13

The asymmetry in the scattering of π− mesons by polarized protons has been measured at 50 different momenta from 0.643 to 2.14 GeV/c. Results were obtained at values of cosθ ranging from approximately +0.9 to -0.95 in the c.m. system at each incident pion momentum. The pion beam was incident on a 7.6-cm-long crystal assembly of lanthanum magnesium nitrate, in which the hydrogen in the water of crystallization was polarized by the "solid effect." The total momentum spread of the beam was 10% (full width at half-height) and data were collected simultaneously in 4 momentum channels, each with 2½% full width at half-height. A gas Čherenkov counter was used to reject incoming electrons. Scattered particles were detected in scintillation counter arrays placed within the 10-cm gap of the polarized target magnet. Encoded information from each array was stored in the memory of a PDP-5 computer connected on-line to a fast electronic logic network. The computer was programmed to classify the events according to momentum and scattering angle and subdivide them into coplanar and noncoplanar categories. The latter provided a measure of the background. The results have been expressed in the form of an expansion in terms of first associated Legendre polynomial series and compared with the predictions of recent phase-shift solutions. It is concluded that although these analyses give satisfactory predictions of the general features of the results, no one solution gives complete agreement with the data above about 1.0 GeV/c.

1 data table match query

No description provided.