Prompt Photons in Photoproduction at HERA

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 66 (2010) 17-33, 2010.
Inspire Record 835534 DOI 10.17182/hepdata.56856

The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb^-1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 < Et < 15 GeV and -1.0 < eta < 2.4, respectively. Cross sections for events with an additional jet are measured as a function of the transverse energy and pseudorapidity of the jet, and as a function of the fractional momenta x_gamma and x_p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k_T factorisation approaches.

2 data tables match query

Bin averaged differential cross section for prompt photon plus jet as a function of the photon transverse energy.

Bin averaged differential cross section for prompt photon plus jet as a function of the jet transverse energy.


Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Eur.Phys.J.C 68 (2010) 381-399, 2010.
Inspire Record 841764 DOI 10.17182/hepdata.56005

The production of leading neutrons, where the neutron carries a large fraction x_L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb^{-1}. The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 < Q^2 < 100 GeV^2, Bjorken scaling variable 1.5x10^{-4} < x < 3x10^{-2}, longitudinal momentum fraction 0.32 < x_L < 0.95 and neutron transverse momentum p_T < 0.2 GeV. The leading neutron structure function, F_2^{LN(3)}(Q^2,x,x_L), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q^2, x and x_L. Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function.

1 data table match query

The semi-inclusive leading neutron structure function for Q**2.


Strangeness Production at low $Q^2$ in Deep-Inelastic $ep$ Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 61 (2009) 185-205, 2009.
Inspire Record 810046 DOI 10.17182/hepdata.45305

The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 &lt; Q^2 &lt; 100 GeV^2 and the inelasticity 0.1 &lt; y &lt; 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

1 data table match query

Value of the LAMBDA/K0S cross section ratio as a function of PT.


Measurement of the Inclusive ep Scattering Cross Section at Low $Q^2$ and x at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 63 (2009) 625-678, 2009.
Inspire Record 817368 DOI 10.17182/hepdata.52425

A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

1 data table match query

Reduced cross section as measured in the NVX-BST data sample for Q**2 = 8.50 GeV**2.. Additional 1.1 PCT luminosity uncertainty not included in the total error.


Measurement of the Proton Structure Function $F_L$ at Low x

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Phys.Lett.B 665 (2008) 139-146, 2008.
Inspire Record 786161 DOI 10.17182/hepdata.45340

A first measurement is reported of the longitudinal proton structure function F_L(x,Q^2) at the ep collider HERA. It is based on inclusive deep inelastic e^+p scattering cross section measurements with a positron beam energy of 27.5 GeV and proton beam energies of 920, 575 and 460 GeV. Employing the energy dependence of the cross section, F_L is measured in a range of squared four-momentum transfers 12 &lt; Q^2 &lt; 90 GeV^2 and low Bjorken x 0.00024 &lt; x &lt; 0.0036. The F_L values agree with higher order QCD calculations based on parton densities obtained using cross section data previously measured at HERA.

9 data tables match query

The measured longitudinal proton structure function FL at Q**2 = 12 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

The measured longitudinal proton structure function FL at Q**2 = 15 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

The measured longitudinal proton structure function FL at Q**2 = 20 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

More…

Three- and Four-jet Production at Low x at HERA

The H1 collaboration Aaron, F.D. ; Aktas, A. ; Alexa, C. ; et al.
Eur.Phys.J.C 54 (2008) 389-409, 2008.
Inspire Record 767896 DOI 10.17182/hepdata.45429

Three- and four-jet production is measured in deep-inelastic $ep$ scattering at low $x$ and $Q^2$ with the H1 detector using an integrated luminosity of $44{.}2 {\rm pb}^{-1}$. Several phase space regions are selected for the three-jet analysis in order to study the underlying parton dynamics from global topologies to the more restrictive regions of forward jets close to the proton direction. The measurements of cross sections for events with at least three jets are compared to fixed order QCD predictions of ${\mathcal{O}}(\alpha_{\rm s}^2)$ and ${\mathcal{O}}(\alpha_{\rm s}^3) $ and with Monte Carlo simulation programs where higher order effects are approximated by parton showers. A good overall description is provided by the ${\mathcal{O}}(\alpha_{\rm s}^3) $ calculation. Too few events are predicted at the lowest $x \sim 10^{-4}$, especially for topologies with two forward jets. This hints to large contributions at low $x$ from initial state radiation of gluons close to the proton direction and unordered in transverse momentum. The Monte Carlo program in which gluon radiation is generated by the colour dipole model gives a good description of both the three- and the four-jet data in absolute normalisation and shape.

1 data table match query

Differential cross section as a function the jet angle THETA for events with at least 4 jets.


Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

2 data tables match query

Differential cross section for D*+- production with dijets as a function of M(C=JET2).

Differential cross section for D*+- production with dijets as a function of M(C=JET2).


Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|&lt;1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

11 data tables match query

Details of systematic errors from the Minimum Bias data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

Details of systematic errors from the Minimum Bias data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

Details of systematic errors from the complete ('all') data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

More…

Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 47 (2006) 597-610, 2006.
Inspire Record 716144 DOI 10.17182/hepdata.45700

A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum $p_t^{jet}_{1(2)}>11(8)$ GeV in the central range of pseudo-rapidity $-0.9<\eta^{jet}_{1(2)}<1.3$. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable $x_{\gamma}^{obs}$. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.

1 data table match query

Ratio of BOTTOM to inclusive cross sections.


Diffractive deep-inelastic scattering with a leading proton at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 749-766, 2006.
Inspire Record 718189 DOI 10.17182/hepdata.45891

The cross section for the diffractive deep-inelastic scattering process $ep \to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \xpom &lt;0.1 in fractional proton longitudinal momentum loss, 0.08 &lt; |t| &lt; 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 &lt; Q^2 &lt; 50 GeV^2 in photon virtuality and 0.004 &lt; \beta = x / \xpom &lt; 1, where x is the Bjorken scaling variable. For $\xpom \lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\rm d} \sigma / {\rm d} t \propto e^{6 t}$, independently of \xpom, \beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \xpom, \beta and Q^2. The \xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\alpha_{\pom}(0)=1.114 \pm 0.018 ({\rm stat.}) \pm 0.012 ({\rm syst.}) ^{+0.040}_{-0.020} ({\rm model})$ and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q^2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.

1 data table match query

No description provided.