Version 2
Longitudinal Spin Transfer to $\Lambda$ and $\bar{\Lambda}$ Hyperons in Polarized Proton-Proton Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 80 (2009) 111102, 2009.
Inspire Record 833423 DOI 10.17182/hepdata.99048

The longitudinal spin transfer, $D_{LL}$, from high energy polarized protons to $\Lambda$ and $\bar{\Lambda}$ hyperons has been measured for the first time in proton-proton collisions at $\sqrt{s} = 200 \mathrm{GeV}$ with the STAR detector at RHIC. The measurements cover pseudorapidity, $\eta$, in the range $|\eta| < 1.2$ and transverse momenta, $p_\mathrm{T}$, up to $4 \mathrm{GeV}/c$. The longitudinal spin transfer is found to be $D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst})$ for inclusive $\Lambda$ and $D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst})$ for inclusive $\bar{\Lambda}$ hyperons with $<\eta> = 0.5$ and $<p_\mathrm{T}> = 3.7 \mathrm{GeV}/c$. The dependence on $\eta$ and $p_\mathrm{T}$ is presented.

9 data tables match query

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

More…

Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

225 data tables match query

fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.

More…

Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at $\sqrt{s} = 500$ GeV

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.D 97 (2018) 032004, 2018.
Inspire Record 1618345 DOI 10.17182/hepdata.103056

We report the first measurements of transverse single-spin asymmetries for inclusive jet and jet + $\pi^{\pm}$ production at midrapidity from transversely polarized proton-proton collisions at $\sqrt{s} = 500$ GeV. The data were collected in 2011 with the STAR detector sampled from 23 pb$^{-1}$ integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta $6 < p_{T, jet} < 55$ GeV/c and pseudorapidity $|\eta| < 1$. Presented are measurements of the inclusive-jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quark-gluon correlators; the Collins asymmetry, sensitive to quark transversity coupled to the polarized Collins fragmentation function; and the first measurement of the "Collins-like" asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first non-zero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than $5\sigma$. The results span a range of x similar to results from SIDIS but at much higher $Q^{2}$. The Collins results enable tests of universality and factorization-breaking in the transverse momentum-dependent formulation of perturbative quantum chromodynamics.

20 data tables match query

Inclusive jet asymmetries $A_{UT}^{\sin(\theta_S)}$ as a function of particle-jet $p_T$.

Inclusive jet asymmetries $A_{UT}^{\sin(\theta_S)}$ as a function of particle-jet $p_T$.

Collins-like asymmetries as a function of particle-jet $p_T$.

More…

$J/\psi$ production cross section and its dependence on charged-particle multiplicity in $p+p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 786 (2018) 87-93, 2018.
Inspire Record 1672453 DOI 10.17182/hepdata.85057

We present a measurement of inclusive $J/\psi$ production at mid-rapidity ($|y|<1$) in $p+p$ collisions at a center-of-mass energy of $\sqrt{s}$ = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for $J/\psi$ as a function of transverse momentum ($p_T$) for $0

3 data tables match query

Top$:$ J/$\psi$ cross section times branching ratio as a function of pT in p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. Solid circles are from this analysis for |y| < 1; open circles and blue squares are the published results for |y| < 1 from STAR; triangles are the published results for |y| < 0.35 from PHENIX. Bars and boxes are statistical and systematic uncertainties, respectively. The curves are CEM (green), NLO NRQCD A (orange) [4], CGC + NRQCD (blue) , and NLO NRQCD B (magenta) theoretical calculations, respectively. Bottom$:$ ratios of these results with respect to the central value from this analysis.

The corrected $n_{ch}$ distributions at mid-rapidity (|$\eta$| < 1) for MB events (open circles) and J/$\psi$ events with J/$\psi$ $p_{T}$ greater than 0 (purple circles), 1.5 (blue squares), and 4 GeV/c (red triangles) in p+p collisions at $\sqrt{s}$ = 200 GeV. The fit function is a negative binomial function. Bars and boxes are statistical and systematic uncertainties, respectively.

The multiplicity dependence of J/$\psi$ production in p+p collisions at $\sqrt{s}$ = 200 GeV. Purple circles, blue squares, and red triangles represent the results for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. Bars and open boxes are statistical and systematic uncertainties, respectively. The ALICE result is shown in the left panel. The purple, blue and red bands in the middle panel are generated from PYTHIA8 for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. The blue and red bands in the right panel are from EPOS3 model calculations for D$^{0}$ with 2 < $p_{T}$ < 4 and 4 < $p_{T}$ < 8 GeV/c, respectively, while the green curve is from the Percolation model for J/$\psi$ with $p_{T}$ > 0 GeV/c.


Longitudinal Double-Spin Asymmetries for $\pi^{0}$s in the Forward Direction for 510 GeV Polarized $pp$ Collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032013, 2018.
Inspire Record 1674826 DOI 10.17182/hepdata.103058

The STAR Collaboration reports measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for neutral pions produced at forward directions in polarized proton-proton collisions, at a center-of-mass energy of $510$ GeV. Results are given for transverse momenta in the range $2

2 data tables match query

Longitudinal Double-Spin Asymmetry, $A_{LL}$ vs $\pi^0$ transverse momentum in polarized pp collisions at $\sqrt{s}$ = 510 GeV. $\pm 6.7\%$ polarization scale uncertainty not shown.

Longitudinal Double-Spin Asymmetry, $A_{LL}$ vs $\pi^0$ transverse momentum in polarized pp collisions at $\sqrt{s}$ = 510 GeV. $\pm 6.7\%$ polarization scale uncertainty not shown.


Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

48 data tables match query

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.

More…

Azimuthal anisotropy measurements of strange and multi-strange hadrons in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 103 (2021) 064907, 2021.
Inspire Record 1852040 DOI 10.17182/hepdata.102643

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.

137 data tables match query

Event plane resolution as a function of centrality for $\psi_{2}$, $\psi_{3}$, and $\psi_{4}$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The statistical uncertainties are smaller than the markers.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

More…

Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at $\sqrt{s_{NN}}=$ 27, 54.4, and 200 GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 127 (2021) 262301, 2021.
Inspire Record 1866196 DOI 10.17182/hepdata.105720

According to first-principle lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region μB ≤ T c. In this range the ratio, C6=C2, of net-baryon distributions are predicted to be negative. In this Letter, we report the first measurement of the midrapidity net-proton C6=C2 from 27, 54.4, and 200 GeV Au þ Au collisions at the Relativistic Heavy Ion Collider (RHIC). The dependence on collision centrality and kinematic acceptance in (p T , y) are analyzed. While for 27 and 54.4 GeV collisions the C6=C2 values are close to zero within uncertainties, it is observed that for 200 GeV collisions, the C6=C2 ratio becomes progressively negative from peripheral to central collisions. Transport model calculations without critical dynamics predict mostly positive values except for the most central collisions within uncertainties. These observations seem to favor a smooth crossover in the high-energy nuclear collisions at top RHIC energy.

51 data tables match query

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

More…

Collision Energy Dependence of $p_{\rm t}$ Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 044918, 2019.
Inspire Record 1712047 DOI 10.17182/hepdata.105509

We present two-particle $p_{\rm t}$ correlations as a function of event centrality for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These results are compared to previous measurements from CERES at the Super Proton Synchrotron and from ALICE at the Large Hadron Collider. The data are compared with UrQMD model calculations and with a model based on a Boltzmann-Langevin approach incorporating effects from thermalization. The relative dynamical correlations for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV show a power law dependence on the number of participant nucleons and agree with the results for Pb+Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~ {\rm TeV}$ from ALICE. As the collision energy is lowered from $\sqrt{s_{\rm NN}}$ = 200 GeV to 7.7 GeV, the centrality dependence of the relative dynamical correlations departs from the power law behavior observed at the higher collision energies. In central collisions, the relative dynamical correlations increase with collision energy up to $\sqrt{s_{\rm NN}}$ = 200 GeV in contrast to previous measurements that showed little dependence on the collision energy.

1 data table match query

'ratios of the measured data to the power law as a function of $N_{part}$'


Azimuthal anisotropy in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 98 (2018) 014915, 2018.
Inspire Record 1641113 DOI 10.17182/hepdata.103057

The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|\eta|<1$. The directed flow in Cu+Au collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $\eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $\langle p_x\rangle$, in Cu+Au collision also exhibits approximately linear dependence on $\eta$ with the intercept at about $\eta\approx-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the "tilted source" and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $\langle p_x\rangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $n\ge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.

33 data tables match query

Directed flow $v_1(\eta)$ and $<p_x>(\eta)$ of charged particles measured with respect to the target and projectile spectator planes in 10%-40% centrality for Cu+Au collisions.

Directed flow $v_1(\eta)$ and $<p_x>(\eta)$ of charged particles measured with respect to the target and projectile spectator planes in 10%-40% centrality for Au+Au collisions.

Conventional and fluctuation components of directed flow $v_1(\eta)$ and momentum shift $<p_x>/<p_T>(\eta)$ of charged particles in 10%-40% centrality for Cu+Au and Au+Au collisions.

More…