Measurement of ttbar production with a veto on additional central jet activity in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 72 (2012) 2043, 2012.
Inspire Record 1094568 DOI 10.17182/hepdata.58936

A measurement of the jet activity in ttbar events produced in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented, using 2.05 fb^-1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. The ttbar events are selected in the dilepton decay channel with two identified b-jets from the top quark decays. Events are vetoed if they contain an additional jet with transverse momentum above a threshold in a central rapidity interval. The fraction of events surviving the jet veto is presented as a function of this threshold for four different central rapidity interval definitions. An alternate measurement is also performed, in which events are vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval is above a threshold. In both measurements, the data are corrected for detector effects and compared to the theoretical models implemented in MC@NLO, POWHEG, ALPGEN and SHERPA. The experimental uncertainties are often smaller than the spread of theoretical predictions, allowing deviations between data and theory to be observed in some regions of phase space.

0 data tables match query

Measurement of the flavour composition of dijet events in pp collisions at sqrt{s}=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2301, 2013.
Inspire Record 1188891 DOI 10.17182/hepdata.68119

This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at sqrt{s}=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb^-1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y| < 2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions.

0 data tables match query

Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 371, 2016.
Inspire Record 1424833 DOI 10.17182/hepdata.73976

A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t t-bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction sigma(gg to X) B(X to HH to b b-bar b b-bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale Lambda[R] = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

0 data tables match query

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

0 data tables match query

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

0 data tables match query

Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

0 data tables match query

Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2216, 2012.
Inspire Record 1102908 DOI 10.17182/hepdata.68066

A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.

0 data tables match query

Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter mediators and other new particles

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 130, 2018.
Inspire Record 1676214 DOI 10.17182/hepdata.80166

Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV corresponding to an integrated luminosity of up to 36 fb$^{-1}$. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.

0 data tables match query

Measurement of single-diffractive dijet production in proton-proton collisions at $\sqrt{s} =$ 8 TeV with the CMS and TOTEM experiments

The CMS & TOTEM collaborations Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 1164, 2020.
Inspire Record 1782637 DOI 10.17182/hepdata.94257

Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss $\xi$ and the four-momentum transfer squared $t$. Both processes pp$\to$pX and pp$\to$Xp, ie with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at $\sqrt{s}$= 8 TeV during a dedicated run with $\beta^{\ast} =$ 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb$^{-1}$. The single-diffractive dijet cross section $\sigma^\mathrm{pX}_{\mathrm{jj}}$, in the kinematic region $\xi \lt$ 0.1, 0.03 $\lt |$t$| \lt 1$ GeV$^2$, with at least two jets with transverse momentum $p_\mathrm{T} >$ 40 GeV, and pseudorapidity $|\eta| \lt$ 4.4, is 21.7$\pm$0.9 (stat)$^{+3.0}_{-3.3}$ (syst) $\pm$ 0.9 (lum) nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of $\xi$, is presented as a function of $x$, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for $x$ values in the range $-$2.9 $\leq \log_{10} x \leq$$-$1.6, is $R = (\sigma^\mathrm{pX}_{\mathrm{jj}}/\Delta\xi)/\sigma_{\mathrm{jj}} =$ 0.025$\pm$0.001 (stat) $\pm$ 0.003 (syst), where $\sigma^\mathrm{pX}_{\mathrm{jj}}$ and $\sigma_{\mathrm{jj}}$ are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.

0 data tables match query

Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 103 (2021) L091103, 2021.
Inspire Record 1850855 DOI 10.17182/hepdata.104836

We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.

0 data tables match query