Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

6 data tables match query

B.R. times dN/dy of $^{3}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions

B.R. times dN/dy of $^{4}_{\Lambda}$H vs y in 3 GeV 0-10% Au+Au collisions

B.R. times dN/dy of $^{3}_{\Lambda}$H vs y in 3 GeV 10-50% Au+Au collisions

More…

Measurement of $\rm ^4_{\Lambda}H$ and $\rm ^4_{\Lambda}He$ binding energy in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 834 (2022) 137449, 2022.
Inspire Record 2105274 DOI 10.17182/hepdata.132662

Measurements of mass and $\Lambda$ binding energy of $\rm ^4_{\Lambda}H$ and $\rm ^4_{\Lambda}He$ in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=3$ GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The $\Lambda$ binding energies are measured to be $\rm 2.22\pm0.06(stat.) \pm0.14(syst.)$ MeV and $\rm 2.38\pm0.13(stat.) \pm0.12(syst.)$ MeV for $\rm ^4_{\Lambda}H$ and $\rm ^4_{\Lambda}He$, respectively. The measured $\Lambda$ binding-energy difference is $\rm 0.16\pm0.14(stat.)\pm0.10(syst.)$ MeV for ground states. Combined with the $\gamma$-ray transition energies, the binding-energy difference for excited states is $\rm -0.16\pm0.14(stat.)\pm0.10(syst.)$ MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the $\Lambda$ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in $\rm \Delta B_{\Lambda}^4(1_{exc}^{+})\approx -\Delta B_{\Lambda}^4(0_{g.s.}^{+})<0$ and present a new method for the study of CSB effect using relativistic heavy-ion collisions.

0 data tables match query

Version 2
Reaction plane correlated triangular flow in Au+Au collisions at $\mathbf{\sqrt{s_{\textrm{NN}}}=3}$ GeV

The STAR Collaboration 19 & STAR collaborations Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 109 (2024) 044914, 2024.
Inspire Record 2702151 DOI 10.17182/hepdata.144480

We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. A significant $v_3$ signal for protons is observed, which increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a slope at mid-rapidity, $dv_3/dy|_{(y=0)}$, opposite in sign compared to the slope for directed flow. No significant $v_3$ signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.

12 data tables match query

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

$v_3\{\Psi_1\}$ vs. centrality for $\pi^+$, $\pi^-$, and protons using the event plane method in $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

More…

Charged pion production in $\mathbf{Au+Au}$ collisions at $\mathbf{\sqrt{s_{NN}}}$ = 2.4$\mathbf{GeV}$

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 56 (2020) 259, 2020.
Inspire Record 1796710 DOI 10.17182/hepdata.97368

We present high-statistic data on charged pion emission from Au+Au collisions at $\sqrt{s_{\rm{NN}}}$ = 2.4 GeV (corresponding to $E_{beam}$ = 1.23 A GeV) in four centrality classes in the range 0 - 40$\%$ of the most central collisions. The data are analyzed as a function of transverse momentum, transverse mass, rapidity, and polar angle. Pion multiplicity per participating nucleon decreases moderately with increasing centrality. The polar angular distributions are found to be non-isotropic even for the most central event class. Our results on pion multiplicity fit well into the general trend of the world data, but undershoot by $2.5 \sigma$ data from the FOPI experiment measured at slightly lower beam energy. We compare our data to state-of-the-art transport model calculations (PHSD, IQMD, PHQMD, GiBUU and SMASH) and find substantial differences between the measurement and the results of these calculations.

11 data tables match query

Mid-rapidity and forward rapidity transverse momentum distributions ($p_{t}$) for charged pion for the 10$\%$most central events.

Reduced transverse mass distribution for negatively charged pions in rapidity bins of $\Delta y_{cm}$ = 0.1width between -0.65 and 0.75 for 0-10$\%$ most central events. The most backward rapidity is shown unscaledwhile for following rapidity slices are scaled up by succesive factors of 10.

Reduced transverse mass distribution for positively charged pions in rapidity bins of $\Delta y_{cm}$ = 0.1width between -0.65 and 0.75 for 0-10$\%$ most central events. The most backward rapidity is shown unscaledwhile for following rapidity slices are scaled up by succesive factors of 10.

More…

Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

69 data tables match query

The uncorrected multiplicity distributions of charged hadrons with 0.2 < $p_T$ < 2.0 GeV/$c$ for 200 GeV Au+Au collisions.

The uncorrected multiplicity distributions of charged hadrons with 0.2 < $p_T$ < 2.0 GeV/$c$ for 200 GeV Au+Au collisions.

The uncorrected multiplicity distributions of charged hadrons with 0.2 < $p_T$ < 2.0 GeV/$c$ for 200 GeV Au+Au collisions.

More…

MEASUREMENT AND PARTIAL WAVE ANALYSIS OF THE REACTION K- P ---> K0(S) PI+ PI- N AT 6-GEV/C

Etkin, A. ; Foley, K.J. ; Goldman, J.H. ; et al.
Phys.Rev.D 22 (1980) 42-60, 1980.
Inspire Record 157981 DOI 10.17182/hepdata.24157

We have performed a partial-wave analysis of the reaction K−p→KS0π+π−n at 6 GeV/c. We present the results of the analysis of about 4500 events in the low-t region (|t′|<0.2 GeV2) for the dominant waves in the 1200-to-2000-MeV mass range. We observe the 2+ K*(1430) and clear signals for the 1+ Q2(1400) and the 3− K*(1800). We find a new 1− resonance at about 1500 MeV and have some evidence for another 1− resonance at 1800 MeV. We also present the results of a partial-wave analysis as a function of t in the 1430-MeV mass region.

1 data table match query

TP DEPENDENCE OF PARTIAL WAVES ALSO STUDIED.


Energy dependence of the Lambda/Sigma0 production cross section ratio in p p interactions.

Kowina, P. ; Wolke, M. ; Adam, H.H. ; et al.
Eur.Phys.J.A 22 (2004) 293-299, 2004.
Inspire Record 644074 DOI 10.17182/hepdata.31762

The production of the Lambda and Sigma0 hyperons has been measured via the pp->pK+Lambda / Sigma0 reaction at the internal COSY-11 facility in the excess energy range between 14 and 60 MeV. The transition of the Lambda/Sigma0 cross section ratio from about 28 at Q<=13 MeV to the high energy level of about 2.5 is covered by the data showing a strong decrease of the ratio between 10 and 20 MeV excess energy. Effects from the final state interactions in the p-Sigma0 channel seem to be much smaller compared to the p-Lambda one. Estimates of the effective range parameters are given for the N-Lambda and the N-Sigma systems.

3 data tables match query

Cross section for LAMBDA production.. Statistical errors only.

Cross section for SIGMA0 production.. Statistical errors only.

Energy dependence of the LAMBDA/SIGMA0 ratio.


Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the STAR Experiment

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024908, 2023.
Inspire Record 2631860 DOI 10.17182/hepdata.134023

We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.

39 data tables match query

The uncorrected number of charged particles except protons ($N_{\rm ch}$) within the pseudorapidity $−2<\eta<0$ used for the centrality selection for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. The centrality classes are expressed in % of the total cross section. The lower boundary of the particle multiplicity ($N_{\rm ch}$) is included for each centrality class. Values are provided for the average number of participants ($\langle N_{\rm part}\rangle$) and pileup fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup fraction from the minimum biased collisions is determined to be 0.46%. Values in the parentheses are systematic uncertainty.

The centrality definition determined by $N_{\rm part}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV from the UrQMD model. The centrality definition is only used in the UrQMD calculation.

Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.

More…

Measurement of vector-tensor spin-transfer observables for the reaction H(p(pol.),d(pol.))pi+ between 580-MeV and 1300-MeV.

Furget, C ; Goy, J ; Kox, S ; et al.
Nucl.Phys.A 655 (1999) 495-521, 1999.
Inspire Record 512680 DOI 10.17182/hepdata.36156

The three polarization tensor components of the deuteron produced in the H( p , d )π + reaction have been measured for the first time. The experiment was performed using a vertically polarized proton beam produced by the SATURNE accelerator. The deuteron polarization was measured with the POLDER polarimeter. The three polarizing powers t 20 00 , t 21 00 and t 22 00 and the three spin-transfer observables t 20 11 , t 22 11 and t 22 11 have been extracted at a proton kinetic energy of 580 MeV over a wide angular range and at two fixed center-of-mass angles, 132° and 151°, between 800 and 1300 MeV. The six observables, calculated in the C.M. helicity frame, have been compared with predictions of the most refined partial-wave analyses and also with the predictions of a theoretical coupled-channel model which includes the NN-NΔ transition. The comparison between the data and the theory/partial-wave analyses shows some discrepancies which get worse with increasing proton energy. Adding these data to the world database should improve significantly future partial-wave analyses. The A y 0 analyzing power has also been measured over the same kinematical range. The partial-wave analysis predictions are in good agreement with this observable.

0 data tables match query

Version 3
Deep sub-threshold {\phi} production and implications for the K+/K- freeze-out in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

3 data tables match query

Multiplicity ratio $\phi/K^{-}$ as function of $\sqrt{s_{NN}}$ for central heavy-ion collisions.

Multiplicity ratio $\phi/K^{-}$ as function of $\sqrt{s_{NN}}$ for central heavy-ion collisions.

Multiplicity ratio $\phi/K^{-}$ as function of $\sqrt{s_{NN}}$ for central heavy-ion collisions.