Measurement of the $CP$-violating phase $\phi_s$ in $B^0_s \to J/\psi\phi$ decays in ATLAS at 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 342, 2021.
Inspire Record 1776624 DOI 10.17182/hepdata.103066

A measurement of the $B^0_s \to J/\psi\phi$ decay parameters using 80.5 $\mathrm{fb}^{-1}$ of integrated luminosity collected with the ATLAS detector from 13 TeV proton-proton collisions at the LHC is presented. The measured parameters include the $CP$-violating phase $\phi_s$, the width difference $\Delta\Gamma_{s}$ between the $B^0_s$ meson mass eigenstates and the average decay width $\Gamma_{s}$. The values measured for the physical parameters are combined with those from 19.2 $\mathrm{fb}^{-1}$ of 7 TeV and 8 TeV data, leading to the following: \begin{eqnarray*} \phi_s & = & -0.087\phantom{0} \pm 0.036\phantom{0} ~\mathrm{(stat.)} \pm 0.021\phantom{0} ~\mathrm{(syst.)~rad} \\ \Delta\Gamma_{s} & = & \phantom{-}0.0657 \pm 0.0043 ~\mathrm{(stat.)} \pm 0.0037 ~\mathrm{(syst.)~ps}^{-1} \\ \Gamma_{s} & = & \phantom{-}0.6703 \pm 0.0014 ~\mathrm{(stat.)} \pm 0.0018 ~\mathrm{(syst.)~ps}^{-1} \\ \end{eqnarray*} Results for $\phi_s$ and $\Delta\Gamma_{s}$ are also presented as 68% confidence level contours in the $\phi_s$-$\Delta\Gamma_{s}$ plane. Furthermore, the transversity amplitudes and corresponding strong phases are measured. $\phi_s$ and $\Delta\Gamma_{s}$ measurements are in agreement with the Standard Model predictions.

0 data tables match query

Version 4
Observation of B$^0$$\to$$\psi$(2S)K$^0_\mathrm{S}\pi^+\pi^-$ and B$^0_\mathrm{S}$$\to$$\psi$(2S)K$^0_\mathrm{S}$ decays

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 82 (2022) 499, 2022.
Inspire Record 2016388 DOI 10.17182/hepdata.114370

Using a data sample of $\sqrt{s} =$ 13 TeV proton-proton collisions collected by the CMS experiment at the LHC in 2017 and 2018 with an integrated luminosity of 103 fb$^{-1}$, the B$^0$$\to$$\psi$(2S)K$^0_\mathrm{S}$ and B$^0_\mathrm{S}$$\to$$\psi$(2S)K$^0_\mathrm{S}\pi^+\pi^-$ decays are observed with significances exceeding 5 standard deviations. The resulting branching fraction ratios, measured for the first time, correspond to $\mathcal{B}$(B$^0_\mathrm{S}$$\to$$\psi$(2S)K$^0_\mathrm{S}$) / $\mathcal{B}$(B$^0$$\to$$\psi$(2S)K$^0_\mathrm{S}$) = (3.33 $\pm$ 0.69 (stat) $\pm$ 0.11 (syst) $\pm$ 0.34 ($f_\mathrm{s} / f_\mathrm{d}$)) $\times$ 10$^{-2}$ and $\mathcal{B}$(B$^0$$\to$$\psi$(2S)K$^0_\mathrm{S}\pi^+\pi^-$) / $\mathcal{B}$(B$^0$$\to$$\psi$(2S)K$^0_\mathrm{S}$) = 0.480 $\pm$ 0.013 (stat) $\pm$ 0.032 (syst), where the last uncertainty in the first ratio is related to the uncertainty in the ratio of production cross sections of B$^0_\mathrm{s}$ and B$^0$ mesons, $f_\mathrm{s} / f_\mathrm{d}$.

0 data tables match query

Experimental evidence for an attractive p-$\phi$ interaction

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 172301, 2021.
Inspire Record 1863040 DOI 10.17182/hepdata.113758

This Letter presents the first experimental evidence of the attractive strong interaction between a proton and a $\phi$ meson. The result is obtained from two-particle correlations of combined p-$\phi \oplus \overline{\rm {p}}$-$\phi$ pairs measured in high-multiplicity pp collisions at $\sqrt{s}~=~13$ TeV by the ALICE collaboration. The spin-averaged scattering length and effective range of the p-$\phi$ interaction are extracted from the fully corrected correlation function employing the Lednický-Lyuboshits approach. In particular, the imaginary part of the scattering length vanishes within uncertainties, indicating that inelastic processes do not play a prominent role for the p-$\phi$ interaction. These data demonstrate that the interaction is dominated by elastic p-$\phi$ scattering. Furthermore, an analysis employing phenomenological Gaussian- and Yukawa-type potentials is conducted. Under the assumption of the latter, the N-$\phi$ coupling constant is found to be $g_{\rm{N}-\phi} = 0.14\pm 0.03\,(\mathrm{stat.})\pm 0.02\,(\mathrm{syst.})$. This work provides valuable experimental input to accomplish a self-consistent description of the N-$\phi$ interaction, which is particularly relevant for the more fundamental studies on partial restoration of chiral symmetry in nuclear medium.

0 data tables match query

Studies of B$^*_\mathrm{s2}(5840)^0$ and B$_\mathrm{s1}(5830)^0$ mesons including the observation of the B$^*_\mathrm{s2}(5840)^0\to$ B$^0$K$_\mathrm{S}^0$ decay in proton-proton collisions at $\sqrt{s}=$8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 939, 2018.
Inspire Record 1693614 DOI 10.17182/hepdata.85740

Measurements of $\mathrm{B}^*_\mathrm{s2}(5840)^0$ and $\mathrm{B}_\mathrm{s1}(5830)^0$ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb$^{-1}$, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson decays into $\mathrm{B}^{(*)+}\mathrm{K}^-$ and $\mathrm{B}^{(*)0}\mathrm{K}^0_\mathrm{S}$, where the $\mathrm{B}^+$ and $\mathrm{B}^0$ mesons are identified using the decays $\mathrm{B}^+\to\mathrm{J}/\psi\,\mathrm{K}^+$ and $\mathrm{B}^0\to\mathrm{J}/\psi\,\mathrm{K}^*(892)^0$. The masses of the $P$-wave $\mathrm{B}^0_\mathrm{S}$ meson states are measured and the natural width of the $\mathrm{B}^*_\mathrm{s2}(5840)^0$ state is determined. The first measurement of the mass difference between the charged and neutral $\mathrm{B}^*$ mesons is also presented. The $\mathrm{B}^*_\mathrm{s2}(5840)^0$ decay to $\mathrm{B}^0\mathrm{K}^0_\mathrm{S}$ is observed, together with a measurement of its branching fraction relative to the $\mathrm{B}^*_\mathrm{s2}(5840)^0\to\mathrm{B}^+\mathrm{K}^-$ decay.

0 data tables match query

Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb$^{-1}$ of Pb+Pb data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2021) 050, 2021.
Inspire Record 1811464 DOI 10.17182/hepdata.95747

This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses $2.2$ nb$^{-1}$ of integrated luminosity collected in 2015 and 2018 at $\sqrt{s_\mathrm{NN}}=5.02$ TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\mathrm{T}}^{\gamma} > 2.5$ GeV, pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass $m_{\gamma\gamma} > 5$ GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6-100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval.

8 data tables match query

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

Measured normalised differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line).

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton $|cos(\theta*)|$ are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

More…

Measurement of angular correlations in Drell-Yan lepton pairs to probe Z/gamma* boson transverse momentum at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 720 (2013) 32-51, 2013.
Inspire Record 1204784 DOI 10.17182/hepdata.61421

A measurement of angular correlations in Drell-Yan lepton pairs via the phistar observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma*->e+e- and Z/gamma*->mu+mu- decays produced in proton--proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb-1. Normalised differential cross sections as a function of phistar are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phistar for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations. Some of the Monte Carlo event generators are also able to describe the data. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.

0 data tables match query

Search for diboson resonances in the 2$\ell$2$\nu$ final state

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2018) 003, 2018.
Inspire Record 1635891 DOI 10.17182/hepdata.82124

A search for heavy resonances decaying to a pair of Z bosons is performed using data collected with the CMS detector at the LHC. Events are selected by requiring two oppositely charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum, which is interpreted as arising from the decay of a second Z boson to two neutrinos. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The hypothesis of a spin-2 bulk graviton (X) decaying to a pair of Z bosons is examined for 600 $\le m_\mathrm{X} \le$ 2500 GeV and upper limits at 95% confidence level are set on the product of the production cross section and branching fraction of X $\to$ ZZ ranging from 100 to 4 fb. For bulk graviton models characterized by a curvature scale parameter $\tilde{k} =$ 0.5 in the extra dimension, the region $m_\mathrm{X} < $ 800 GeV is excluded, providing the most stringent limit reported to date. Variations of the model considering the possibility of a wide resonance produced exclusively via gluon-gluon fusion or $\mathrm{q}\overline{\mathrm{q}}$ annihilation are also examined.

0 data tables match query

Search for charged Higgs bosons decaying into top and bottom quarks at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2018) 085, 2018.
Inspire Record 1686365 DOI 10.17182/hepdata.83203

A search for charged Higgs bosons heavier than the top quark and decaying via $H^\pm \rightarrow tb$ is presented. The data analysed corresponds to 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV and was recorded with the ATLAS detector at the LHC in 2015 and 2016. The production of a charged Higgs boson in association with a top quark and a bottom quark, $pp \rightarrow tb H^\pm$, is explored in the mass range from $m_{H^\pm}$ = 200 to 2000 GeV using multi-jet final states with one or two electrons or muons. Events are categorised according to the multiplicity of jets and how likely these are to have originated from hadronisation of a bottom quark. Multivariate techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching fraction of a charged Higgs boson as a function of its mass, which range from 2.9 pb at $m_{H^\pm}$ = 200 GeV to 0.070 pb at $m_{H^\pm}$ = 2000 GeV. The results are interpreted in two benchmark scenarios of the Minimal Supersymmetric Standard Model.

0 data tables match query

Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2018) 088, 2018.
Inspire Record 1657397 DOI 10.17182/hepdata.85739

A search for a new heavy particle decaying to a pair of vector bosons (WW or WZ) is presented using data from the CMS detector corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at a centre-of-mass energy of 13 TeV in 2016. One of the bosons is required to be a W boson decaying to e$\nu$ or $\mu\nu$, while the other boson is required to be reconstructed as a single massive jet with substructure compatible with that of a highly-energetic quark pair from a W or Z boson decay. The search is performed in the resonance mass range between 1.0 and 4.5 TeV. The largest deviation from the background-only hypothesis is observed for a mass near 1.4 TeV and corresponds to a local significance of 2.5 standard deviations. The result is interpreted as an upper bound on the resonance production cross section. Comparing the excluded cross section values and the expectations from theoretical calculations in the bulk graviton and heavy vector triplet models, spin-2 WW resonances with mass smaller than 1.07 TeV and spin-1 WZ resonances lighter than 3.05 TeV, respectively, are excluded at 95% confidence level.

0 data tables match query

Version 2
Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2021) 027, 2021.
Inspire Record 1851456 DOI 10.17182/hepdata.102459

Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1.12 $\pm$ 0.09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations.

0 data tables match query

Version 2
Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2021) 208, 2021.
Inspire Record 1849964 DOI 10.17182/hepdata.101186

A search is presented for physics beyond the standard model (SM) using electron or muon pairs with high invariant mass. A data set of proton-proton collisions collected by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV from 2016 to 2018 corresponding to a total integrated luminosity of up to 140 fb$^{-1}$ is analyzed. No significant deviation is observed with respect to the SM background expectations. Upper limits are presented on the ratio of the product of the production cross section and the branching fraction to dileptons of a new narrow resonance to that of the Z boson. These provide the most stringent lower limits to date on the masses for various spin-1 particles, spin-2 gravitons in the Randall--Sundrum model, as well as spin-1 mediators between the SM and dark matter particles. Lower limits on the ultraviolet cutoff parameter are set both for four-fermion contact interactions and for the Arkani-Hamed, Dimopoulos, and Dvali model with large extra dimensions. Lepton flavor universality is tested at the TeV scale for the first time by comparing the dimuon and dielectron mass spectra. No significant deviation from the SM expectation of unity is observed.

0 data tables match query

Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2020) 005, 2020.
Inspire Record 1802523 DOI 10.17182/hepdata.94786

A search for new physics with non-resonant signals in dielectron and dimuon final states in the mass range above 2 TeV is presented. This is the first search for non-resonant signals in dilepton final states at the LHC to use a background estimate from the data. The data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were recorded by the ATLAS experiment in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV during Run 2 of the Large Hadron Collider. The benchmark signal signature is a two-quark and two-lepton contact interaction, which would enhance the dilepton event rate at the TeV mass scale. To model the contribution from background processes a functional form is fit to the dilepton invariant-mass spectra in data in a mass region below the region of interest. It is then extrapolated to a high-mass signal region to obtain the expected background there. No significant deviation from the expected background is observed in the data. Upper limits at 95 % CL on the number of events and the visible cross-section times branching fraction for processes involving new physics are provided. Observed (expected) 95 % CL lower limits on the contact interaction energy scale reach 35.8 (37.6) TeV.

0 data tables match query

Observation of the B$^0_\mathrm{s}$ $\to$ X(3872)$\phi$ decay

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 152001, 2020.
Inspire Record 1795066 DOI 10.17182/hepdata.94444

Using a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment in 2016-2018, the B$^0_\mathrm{s}$ $\to$ X(3872)$\phi$ decay is observed. Decays into J/$\psi\,\pi^+\pi^-$ and K$^+$K$^-$ are used to reconstruct, respectively, the X(3872) and $\phi$. The ratio of the product of branching fractions $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ X(3872)$\phi)\,\mathcal{B}($X(3872) $\to$ J$/\psi\,\pi^+\pi^-)$ to the product $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ $\psi$(2S)$\phi)\,\mathcal{B}(\psi$(2S) $\to$ J/$\psi\,\pi^+\pi^-)$ is measured to be (2.21 $\pm$ 0.29 (stat) $\pm$ 0.17 (syst))%. The ratio $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ X(3872)$\phi) / \mathcal{B}($B$^{0}$ $\to$ X(3872)K$^0)$ is found to be consistent with one, while the ratio $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ X(3872)$\phi) / \mathcal{B}($B$^+$ $\to$ X(3872)K$^+)$ is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B$^0$ and B$^0_\mathrm{s}$ meson decays compared to B$^+$. The reported observation may shed new light on the nature of the X(3872) particle.

0 data tables match query

Search for bottom-squark pair production in $pp$ collision events at $\sqrt{s} = 13$ TeV with hadronically decaying $\tau$-leptons, $b$-jets and missing transverse momentum using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.D 104 (2021) 032014, 2021.
Inspire Record 1851675 DOI 10.17182/hepdata.99788

A search for pair production of bottom squarks in events with hadronically decaying $\tau$-leptons, $b$-tagged jets and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino $\tilde \chi_2^0$ and a bottom quark, with $\tilde \chi_2^0$ decaying into a Higgs boson and the lightest neutralino $\tilde \chi_1^0$. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying $\tau$-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the $\tilde \chi_2^0$, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between $\tilde \chi_2^0$ and $\tilde \chi_1^0$. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.

0 data tables match query

Search for a W' boson decaying to a vector-like quark and a top or bottom quark in the all-jets final state at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2022) 088, 2022.
Inspire Record 2039384 DOI 10.17182/hepdata.127138

A search is presented for a heavy W' boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W' boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W' boson cross section and the final state branching fraction. A W' boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to date for this final state.

0 data tables match query

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

0 data tables match query

Version 2
Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\tau$-lepton in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2021) 179, 2021.
Inspire Record 1843001 DOI 10.17182/hepdata.100174

A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\tau$-lepton is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying $\tau$-lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing $b$-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying $\tau$-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into $t\tau$ and $b\nu$. Scalar leptoquarks decaying exclusively into $t\tau$ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into $t\tau$, the lower mass limit is 1.22 TeV.

0 data tables match query

Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 2980, 2014.
Inspire Record 1288709 DOI 10.17182/hepdata.64433

A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a $b\bar{b}$ quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at $m_H$=125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.

0 data tables match query

Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 371, 2016.
Inspire Record 1424833 DOI 10.17182/hepdata.73976

A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t t-bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction sigma(gg to X) B(X to HH to b b-bar b b-bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale Lambda[R] = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

0 data tables match query

Measurements of top-quark pair to $Z$-boson cross-section ratios at $\sqrt s = 13, 8, 7$TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 02 (2017) 117, 2017.
Inspire Record 1502921 DOI 10.17182/hepdata.75536

Ratios of top-quark pair to $Z$-boson cross sections measured from proton--proton collisions at the LHC centre-of-mass energies of $\sqrt s=13$TeV, 8TeV, and 7TeV are presented by the ATLAS Collaboration. Single ratios, at a given $\sqrt s$ for the two processes and at different $\sqrt s$ for each process, as well as double ratios of the two processes at different $\sqrt s$, are evaluated. The ratios are constructed using previously published ATLAS measurements of the $t\overline{t}$ and $Z$-boson production cross sections, corrected to a common phase space where required, and a new analysis of $Z \rightarrow \ell^+ \ell^-$ where $\ell=e,\mu$ at $\sqrt s=13$TeV performed with data collected in 2015 with an integrated luminosity of $3.2$fb$^{-1}$. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the $Z\rightarrow e^+e^-$ and the $Z\rightarrow \mu^+ \mu^-$ channels for each $\sqrt s$ value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-$x$ values near 0.1 and the light-quark sea for $x<0.02$.

0 data tables match query

Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 071802, 2018.
Inspire Record 1624166 DOI 10.17182/hepdata.83201

An inclusive search for the standard model Higgs boson ($\mathrm{H}$) produced with large transverse momentum ($p_\mathrm{T}$) and decaying to a bottom quark-antiquark pair ($\mathrm{b}\overline{\mathrm{b}}$) is performed using a data set of pp collisions at $\sqrt{s}=$ 13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $\mathrm{b}\overline{\mathrm{b}}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated $\mathrm{b}$ tagging techniques. The method is validated with $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ decays. The $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}}$ with $p_\mathrm{T} > $450 GeV and in the pseudorapidity range $-$2.5 $< \eta <$ 2.5 is 74 $\pm$ 48 (stat) $_{-10}^{+17}$ (syst) fb, which is consistent within uncertainties with the standard model prediction.

0 data tables match query

Search for new particles decaying to a jet and an emerging jet

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 179, 2019.
Inspire Record 1700173 DOI 10.17182/hepdata.88380

A search is performed for events consistent with the pair production of a new heavy particle that acts as a mediator between a dark sector and normal matter, and that decays to a light quark and a new fermion called a dark quark. The search is based on data corresponding to an integrated luminosity of 16.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS experiment at the LHC in 2016. The dark quark is charged only under a new quantum-chromodynamics-like force, and forms an "emerging jet" via a parton shower, containing long-lived dark hadrons that give rise to displaced vertices when decaying to standard model hadrons. The data are consistent with the expectation from standard model processes. Limits are set at 95% confidence level excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay lengths smaller than 5 mm and greater than 225 mm are also excluded in the lower part of this mass range. The dependence of the limit on the dark pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new particle that decays to a jet and an emerging jet.

0 data tables match query

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

0 data tables match query

Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 087, 2022.
Inspire Record 1976980 DOI 10.17182/hepdata.114367

A search has been performed for heavy resonances decaying to ZZ or ZW and for axion-like particles (ALPs) mediating nonresonant ZZ or ZH production, in final states with two charged leptons ($\ell$ = e, $\mu$) produced by the decay of a Z boson, and two quarks produced by the decay of a Z, W, or Higgs boson H. The analysis is sensitive to resonances with masses in the range 450 to 2000 GeV. Two categories are defined corresponding to the merged or resolved reconstruction of the hadronically decaying boson. The search is based on data collected during 2016-2018 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-2 and spin-1 resonances are derived as functions of the resonance mass, and exclusion limits on the production of bulk graviton particles and W$'$ bosons are calculated in the framework of the warped extra dimensions and heavy vector triplet models, respectively. In addition, upper limits on the ALP-mediated diboson production cross section and ALP couplings to standard model particles are obtained in the framework of linear and chiral effective field theories. These are the first limits on nonresonant ALP-mediated ZZ and ZH production obtained by the LHC experiments.

0 data tables match query

Version 2
Inclusive nonresonant multilepton probes of new phenomena at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 112007, 2022.
Inspire Record 2034279 DOI 10.17182/hepdata.110691

An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.

0 data tables match query

Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96~\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\text{FB}}^{t\bar{t}}$ in both final states yields $A_{\text{FB}}^{t\bar{t}}=0.160\pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $\Delta y$. A linear fit to $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$, assuming zero asymmetry at $\Delta y=0$, yields a slope of $\alpha=0.14\pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$ in the two final states is $\alpha=0.227\pm0.057$, which is $2.0\sigma$ larger than the SM prediction.

0 data tables match query

Measurements of the pp$\to$ZZ production cross section and the Z$\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 165, 2018.
Inspire Record 1625296 DOI 10.17182/hepdata.80152

Four-lepton production in proton-proton collisions, $\mathrm{pp}\to (\mathrm{Z}/ \gamma^*)(\mathrm{Z}/\gamma^*) \to 4\ell$, where $\ell = \mathrm{e}$ or $\mu$, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The ZZ production cross section, $\sigma(\mathrm{pp} \to \mathrm{Z}\mathrm{Z}) = 17.2 \pm 0.5\text{ (stat) }\pm 0.7\text{ (syst) }\pm 0.4(\mathrm{theo}) \pm 0.4\text{ (lumi)}$ pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region $60 < m_{\ell^+\ell^-} < $120 GeV, is consistent with standard model predictions. Differential cross sections are measured and are well described by the theoretical predictions. The Z boson branching fraction to four leptons is measured to be $\mathcal{B}(\mathrm{Z}\to 4\ell) = 4.8 \pm 0.2\text{ (stat) }\pm 0.2\text{ (syst) } \pm 0.1\text{ (theo) }\pm 0.1\text{ (lumi) }\times 10^{-6}$ for events with a four-lepton invariant mass in the range 80 $ < m_{4\ell} < $ 100 GeV and a dilepton mass $m_{\ell\ell} > $4 GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ$\gamma$ couplings at 95% confidence level: $-0.0012 < f_4^\mathrm{Z} < 0.0010$, $-0.0010 < f_5^\mathrm{Z} < 0.0013$, $-0.0012 < f_4^{\gamma} < 0.0013$, $-0.0012 < f_5^{\gamma} < 0.0013$.

0 data tables match query

Search for new physics using effective field theory in 13 TeV pp collision events that contain a top quark pair and a boosted Z or Higgs boson

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 032008, 2023.
Inspire Record 2142913 DOI 10.17182/hepdata.127700

A data sample containing top quark pairs ($\mathrm{t\bar{t}}$) produced in association with a Lorentz-boosted Z or Higgs boson is used to search for signs of new physics using effective field theory. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions produced at a center-of-mass energy of 13 TeV at the LHC and collected by the CMS experiment. Selected events contain a single lepton and hadronic jets, including two identified with the decay of bottom quarks, plus an additional large-radius jet with high transverse momentum identified as a Z or Higgs boson decaying to a bottom quark pair. Machine learning techniques are employed to discriminate between $\mathrm{t\bar{t}}$Z or $\mathrm{t\bar{t}}$H events and events from background processes, which are dominated by $\mathrm{t\bar{t}}$ + jets production. No indications of new physics are observed. The signal strengths of boosted $\mathrm{t\bar{t}}$Z and $\mathrm{t\bar{t}}$H production are measured, and upper limits are placed on the $\mathrm{t\bar{t}}$Z and $\mathrm{t\bar{t}}$H differential cross sections as functions of the Z or Higgs boson transverse momentum. The effects of new physics are probed using a framework in which the standard model is considered to be the low-energy effective field theory of a higher energy scale theory. Eight possible dimension-six operators are added to the standard model Lagrangian and their corresponding coefficients are constrained via fits to the data.

0 data tables match query

Search for charged Higgs bosons decaying into a top quark and a bottom quark at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2021) 145, 2021.
Inspire Record 1847643 DOI 10.17182/hepdata.100427

A search for charged Higgs bosons decaying into a top quark and a bottom quark is presented. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$=13TeV, recorded with the ATLAS detector at the LHC. The production of a heavy charged Higgs boson in association with a top quark and a bottom quark, $pp\rightarrow tbH^{+}\rightarrow tbtb$, is explored in the $H^+$ mass range from 200 to 2000 GeV using final states with jets and one electron or muon. Events are categorised according to the multiplicity of jets and $b$-tagged jets, and multivariate analysis techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching ratio of a charged Higgs boson as a function of its mass; they range from 3.6 pb at 200 GeV to 0.036 pb at 2000 GeV at 95% confidence level. The results are interpreted in the hMSSM and $M_h^{125}$ scenarios.

0 data tables match query

Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 005, 2022.
Inspire Record 1984855 DOI 10.17182/hepdata.115024

A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu q\bar{q}'$ and the dilepton decay channels HH $\to$ $\mathrm{b\bar{b}}$WW$^*$ $\to$ $\mathrm{b\bar{b}}\ell\nu \ell\nu$ and HH $\to$ $\mathrm{b\bar{b}}\tau\tau$ $\to$ $\mathrm{b\bar{b}}\ell\nu\nu \ell\nu\nu$ are examined, where $\ell$ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the H $\to$ $\mathrm{b\bar{b}}$ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X $\to$ HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X $\to$ HH searches.

0 data tables match query

Version 2
Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 378, 2021.
Inspire Record 1828962 DOI 10.17182/hepdata.100163

The rate for Higgs (H) bosons production in association with either one (tH) or two ($\mathrm{t\bar{t}}$H) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb$^{-1}$. The analysis is aimed at events that contain H $\to$ WW, H $\to$$\tau\tau$, or H $\to$ ZZ decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among the tH, the $\mathrm{t\bar{t}}$H, and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the $\mathrm{t\bar{t}}$H and tH signals correspond to 0.92 $\pm$ 0.19 (stat) $^{+0.17}_{-0.13}$ (syst) and 5.7 $\pm$ 2.7 (stat) $\pm$ 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for $\mathrm{t\bar{t}}$H, and to 1.4 (0.3) for tH production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling $y_{\mathrm{t}}$ of the Higgs boson to the top quark divided by its SM expectation, $\kappa_\mathrm{t}$ = $y_\mathrm{t} / y_\mathrm{t}^\mathrm{SM}$, is constrained to be within $-$0.9 $\lt$$\kappa_\mathrm{t}$$\lt$$-$0.7 or 0.7 $\lt$$\kappa_\mathrm{t}$$\lt$ 1.1, at 95% confidence level. This result is the most sensitive measurement of the $\mathrm{t\bar{t}}$H production rate to date.

0 data tables match query