Search for long-lived particles decaying into displaced jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 032011, 2019.
Inspire Record 1704319 DOI 10.17182/hepdata.88880

A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or $R$-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300-2400 GeV and top squark masses up to 1350-1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.

0 data tables match query

Search for dijet resonances using events with three jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135448, 2020.
Inspire Record 1764796 DOI 10.17182/hepdata.91058

A search for a narrow resonance with a mass between 350 and 700 GeV, and decaying into a pair of jets, is performed using proton-proton collision events containing at least three jets. The data sample corresponds to an integrated luminosity of 18.3 fb$^{-1}$ recorded at $\sqrt{s} =$ 13 TeV with the CMS detector. Data are collected with a technique known as "data scouting", in which the events are reconstructed, selected, and recorded at a high rate in a compact form by the high-level trigger. The three-jet final state provides sensitivity to lower resonance masses than in previous searches using the data scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transverse momenta in the event, is used to search for a resonance. No significant excess over a smoothly falling background is found. Limits at 95% confidence level are set on the production cross section of a narrow dijet resonance and compared with the cross section of a vector dark matter mediator coupling to dark matter particles and quarks. Translating to a model where the narrow vector resonance interacts only with quarks, upper limits on this coupling range between 0.10 and 0.15, depending on the resonance mass. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a flavor-inclusive dijet resonance search.

0 data tables match query

Study of central exclusive $\pi^+\pi^-$ production in proton-proton collisions at $\sqrt{s} =$ 5.02 and 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 718, 2020.
Inspire Record 1784063 DOI 10.17182/hepdata.100551

Central exclusive and semiexclusive production of $\pi^+\pi^-$ pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13 TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central $\pi^+\pi^-$ production are measured as functions of invariant mass, transverse momentum, and rapidity of the $\pi^+\pi^-$ system in the fiducial region defined as transverse momentum $p_\mathrm{T}(\pi)$ $>$ 0.2 GeV and pseudorapidity $|\eta(\pi)|$ $<$ 2.4. The production cross sections for the four resonant channels f$_0(500)$, $\rho^0(770)$, f$_0(980)$, and f$_2(1270)$ are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13 TeV.

0 data tables match query

Study of the production of charged pions, kaons, and protons in pPb collisions at sqrt(sNN) = 5.02 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 2847, 2014.
Inspire Record 1242440 DOI 10.17182/hepdata.63972

Spectra of identified charged hadrons are measured in pPb collisions with the CMS detector at the LHC at sqrt(sNN) = 5.02 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and laboratory rapidity abs(y) < 1 are identified via their energy loss in the silicon tracker. The average pt increases with particle mass and the charged multiplicity of the event. The increase of the average pt with charged multiplicity is greater for heavier hadrons. Comparisons to Monte Carlo event generators reveal that EPOS LHC, which incorporates additional hydrodynamic evolution of the created system, is able to reproduce most of the data features, unlike HIJING and AMPT. The pt spectra and integrated yields are also compared to those measured in pp and PbPb collisions at various energies. The average transverse momentum and particle ratio measurements indicate that particle production at LHC energies is strongly correlated with event particle multiplicity.

0 data tables match query

Study of high-pT charged particle suppression in PbPb compared to pp collisions at sqrt(sNN)=2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 1945, 2012.
Inspire Record 1088823 DOI 10.17182/hepdata.58980

The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range pt = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 5 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher pt, this suppression is significantly reduced, approaching roughly a factor of 2 for particles with pt in the range pt=40-100 GeV/c.

0 data tables match query

Suppression of excited Upsilon states relative to the ground state in PbPb collisions at sqrt(sNN) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 142301, 2018.
Inspire Record 1605750 DOI 10.17182/hepdata.79055

The relative yields of $\Upsilon$ mesons produced in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, $\Upsilon$(2S) and $\Upsilon$(3S), to the ground state, $\Upsilon$(1S), in both PbPb and pp collisions at the same center-of-mass energy. The double ratios, [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{PbPb}$ / [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{pp}$, are measured to be 0.308 $\pm$ 0.055 (stat) $\pm$ 0.019 (syst) for the $\Upsilon$(2S) and less than 0.26 at 95% confidence level for the $\Upsilon$(3S). No significant $\Upsilon$(3S) signal is found in the PbPb data. The double ratios are studied as a function of collision centrality, as well as dimuon transverse momentum and rapidity. No significant dependencies are observed.

0 data tables match query

Measurement of long-range near-side two-particle angular correlations in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 172302, 2016.
Inspire Record 1397173 DOI 10.17182/hepdata.73192

Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 inverse nanobarns. The correlations are studied over a broad range of pseudorapidity (abs(eta) < 2.4) and over the full azimuth (phi) as a function of charged particle multiplicity and transverse momentum (pt). In high-multiplicity events, a long-range (abs(Delta eta) > 2.0), near-side (Delta phi approximately 0) structure emerges in the two-particle Delta eta-Delta phi correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < pt < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity, with an overall correlation strength similar to that found in earlier pp data at sqrt(s) = 7 TeV. The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities of N[ch] approximately 180, a region so far unexplored in pp collisions. The observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.

0 data tables match query

Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 02 (2010) 041, 2010.
Inspire Record 845323 DOI 10.17182/hepdata.54829

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

0 data tables match query

A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

0 data tables match query

Measurement of electroweak $Z(\nu\bar{\nu})\gamma jj$ production and limits on anomalous quartic gauge couplings in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 082, 2023.
Inspire Record 2142343 DOI 10.17182/hepdata.127924

The electroweak production of $Z(\nu\bar{\nu})\gamma$ in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial $Z(\nu\bar{\nu})\gamma jj$ cross section for electroweak production is measured to be 0.77$^{+0.34}_{-0.30}$ fb and is consistent with the Standard Model prediction. Evidence of electroweak $Z(\nu\bar{\nu})\gamma jj$ production is found with an observed significance of 3.2$\sigma$ for the background-only hypothesis, compared with an expected significance of 3.7$\sigma$. The combination of this result with the previously published ATLAS observation of electroweak $Z(\nu\bar{\nu})\gamma jj$ production yields an observed (expected) signal significance of 6.3$\sigma$ (6.6$\sigma$). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.

0 data tables match query