Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 727 (2013) 371-380, 2013.
Inspire Record 1241423 DOI 10.17182/hepdata.61692

The average transverse momentum $\langle p_{\rm T}\rangle$ versus the charged-particle multiplicity $N_{\rm ch}$ was measured in p-Pb collisions at a collision energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at collision energies of $\sqrt{s}=0.9$, 2.76, and 7 TeV in the kinematic range $0.15<p_{\rm T}<10.0$ GeV/$c$ and $|\eta|<0.3$ with the ALICE apparatus at the LHC. These data are compared to results in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV at similar charged-particle multiplicities. In pp and p-Pb collisions, a strong increase of $\langle p_{\rm T}\rangle$ with $N_{\rm ch}$ is observed, which is much stronger than that measured in Pb-Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p-Pb and Pb-Pb collisions cannot be described by an incoherent superposition of nucleon-nucleon collisions and pose a challenge to most of the event generators.

0 data tables match query

Inclusive photon production at forward rapidities in proton-proton collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 75 (2015) 146, 2015.
Inspire Record 1328669 DOI 10.17182/hepdata.69495

The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities ($2.3 < \eta < 3.9$) in proton-proton collisions at three center-of-mass energies, $\sqrt{s}=0.9$, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2% $\pm$ 0.3% (stat) $\pm$ 8.8% (sys) and 61.2% $\pm$ 0.3% (stat) $\pm$ 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.

0 data tables match query

Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 739 (2014) 139-151, 2014.
Inspire Record 1288705 DOI 10.17182/hepdata.65772

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.

0 data tables match query

Production of charged pions, kaons and protons at large transverse momenta in pp and Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 736 (2014) 196-207, 2014.
Inspire Record 1276299 DOI 10.17182/hepdata.62520

Transverse momentum spectra of $\pi^{\pm}$, $\rm K^{\pm}$ and p($\bar{\rm p}$) up to $p_{\rm T}$ = 20 GeV/$c$ at mid-rapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at $p_{\rm T} \approx 3 GeV/c$ in central Pb-Pb collisions. Below the peak, $p_{\rm T}$ < 3 GeV/$c$, both ratios are in good agreement with hydrodynamical calculations, suggesting that the peak itself is dominantly the result of radial flow rather than anomalous hadronization processes. For $p_{\rm T}$ > 10 GeV/$c$ particle ratios in pp and Pb-Pb collisions are in agreement and the nuclear modification factors for $\pi^{\pm}$, $\rm K^{\pm}$ and $\rm p$($\bar{\rm p}$) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets.

0 data tables match query