Measurement of $\sin^2\theta^{\rm lept}_{\rm eff}$ using $e^+e^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112016, 2016.
Inspire Record 1456804 DOI 10.17182/hepdata.78542

At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.

0 data tables match query

Indirect measurement of $\sin^2 \theta_W$ (or $M_W$) using $\mu^+\mu^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 89 (2014) 072005, 2014.
Inspire Record 1280719 DOI 10.17182/hepdata.64738

Drell-Yan lepton pairs are produced in the process $p\bar{p} \rightarrow \mu^+\mu^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $\mu^-$ as a function of the invariant mass of the $\mu^+\mu^-$ pair is used to obtain the effective leptonic determination $\sin^2 \theta^{lept}_{eff}$ of the electroweak-mixing parameter $\sin^2 \theta_W$, from which the value of $\sin^2 \theta_W$ is derived assuming the standard model. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.2 fb-1 of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2 \theta^{lept}_{eff}$ is found to be 0.2315 +- 0.0010, where statistical and systematic uncertainties are combined in quadrature. When interpreted within the context of the standard model using the on-shell renormalization scheme, where $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$, the measurement yields $\sin^2 \theta_W$ = 0.2233 +- 0.0009, or equivalently a W-boson mass of 80.365 +- 0.047 GeV/c^2. The value of the W-boson mass is in agreement with previous determinations in electron-positron collisions and at the Tevatron collider.

0 data tables match query

Measurement of the electron charge asymmetry in $\boldsymbol{p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$ decays in $\boldsymbol{p\bar{p}}$ collisions at $\boldsymbol{\sqrt{s}=1.96}$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 032007, 2015.
Inspire Record 1333394 DOI 10.17182/hepdata.73177

We present a measurement of the electron charge asymmetry in $p\bar{p}\rightarrow W+X \rightarrow e\nu +X$ events at a center-of-mass energy of 1.96 TeV, using data corresponding to 9.7~fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron pseudorapidity and is presented in five kinematic bins based on the electron transverse energy and the missing transverse energy in the event. The measured asymmetry is compared with next-to-leading-order predictions in perturbative quantum chromodynamics and provides accurate information for the determination of parton distribution functions of the proton. This is the most precise lepton charge asymmetry measurement to date.

0 data tables match query

Measurement of the forward-backward asymmetry in $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryon production in $p \overline p$ collisions at $\sqrt s =1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 072008, 2015.
Inspire Record 1352125 DOI 10.17182/hepdata.73327

We measure the forward-backward asymmetry in the production of $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryons as a function of rapidity in $p \overline p $ collisions at $\sqrt s =1.96$ TeV using $10.4$ fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of $\Lambda_b^0$ or $\overline \Lambda_b^0$ particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity $y$ in the range $0.1<|y|<2$ is $A=0.04 \pm 0.07 {\rm (stat)} \pm 0.02 {\rm (syst)}$.

0 data tables match query

Measurement of the forward-backward asymmetries in the production of $\Xi$ and $\Omega$ baryons in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 112001, 2016.
Inspire Record 1457606 DOI 10.17182/hepdata.78545

We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.

0 data tables match query

Measurement of the forward-backward asymmetry of $\Lambda$ and $\bar{\Lambda}$ production in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 032002, 2016.
Inspire Record 1404885 DOI 10.17182/hepdata.76972

We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.

0 data tables match query

Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112003, 2016.
Inspire Record 1416824 DOI 10.17182/hepdata.77045

We report a measurement of the forward-backward asymmetry, $A_{FB}$, in $b\bar{b}$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic $b$-hadron decays. The event sample was collected at a center-of-mass energy of $\sqrt{s}=1.96$ TeV with the CDF II detector and corresponds to 6.9 fb$^{-1}$ of integrated luminosity. We obtain an integrated asymmetry of $A_{FB}(b\bar{b})=(1.2 \pm 0.7)$\% at the particle level for $b$-quark pairs with invariant mass, $m_{b\bar{b}}$, down to $40$ GeV/$c^2$ and measure the dependence of $A_{FB}(b\bar{b})$ on $m_{b\bar{b}}$. The results are compatible with expectations from the standard model.

0 data tables match query

Study of the production of $\Lambda_b^0$ and $\overline{B}^0$ hadrons in $pp$ collisions and first measurement of the $\Lambda_b^0\rightarrow J/\psi pK^-$ branching fraction

The LHCb collaboration Aaij, R. ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Chin.Phys.C 40 (2016) 011001, 2016.
Inspire Record 1391317 DOI 10.17182/hepdata.75485

The product of the $\Lambda_b^0$ ($\overline{B}^0$) differential production cross-section and the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ ($\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$) is measured as a function of the beauty hadron transverse momentum, $p_{\rm T}$, and rapidity, $y$. The kinematic region of the measurements is $p_{\rm T}<20~{\rm GeV}/c$ and $2.0<y<4.5$. The measurements use a data sample corresponding to an integrated luminosity of $3~{\rm fb}^{-1}$ collected by the LHCb detector in $pp$ collisions at centre-of-mass energies $\sqrt{s}=7~{\rm TeV}$ in 2011 and $\sqrt{s}=8~{\rm TeV}$ in 2012. Based on previous LHCb results of the fragmentation fraction ratio, $f_{\Lambda_B^0}/f_d$, the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay $\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$, and the fourth is due to the knowledge of $f_{\Lambda_b^0}/f_d$. The sum of the asymmetries in the production and decay between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ is also measured as a function of $p_{\rm T}$ and $y$. The previously published branching fraction of $\Lambda_b^0\rightarrow J/\psi p\pi^-$, relative to that of $\Lambda_b^0\rightarrow J/\psi pK^-$, is updated. The branching fractions of $\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^-$ are determined.

0 data tables match query

Measurement of the Forward-Backward Asymmetry in Top Quark-Antiquark Production in $p\bar{p}$ Collisions using the Lepton+Jets Channel

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 90 (2014) 072011, 2014.
Inspire Record 1293918 DOI 10.17182/hepdata.64123

We present a measurement of the forward--backward asymmetry in top quark-antiquark production using the full Tevatron Run II dataset collected by the D0 experiment at Fermilab. The measurement is performed in lepton+jets final states using a new kinematic fitting algorithm for events with four or more jets and a new partial reconstruction algorithm for events with only three jets. Corrected for detector acceptance and resolution effects, the asymmetry is evaluated to be 10.6+-3.0 %. Results are consistent with the standard model predictions which range from 5.0% to 8.8%. We also present the dependence of the asymmetry on the invariant mass of the top quark--antiquark system and the difference in rapidities of top quark and antiquark.

0 data tables match query

Measurement of the production and lepton charge asymmetry of $\textit{W}$ bosons in Pb+Pb collisions at $\sqrt{s_{\mathrm{\mathbf{NN}}}}=$ 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 23, 2015.
Inspire Record 1311623 DOI 10.17182/hepdata.66358

A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.

0 data tables match query