Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 172301, 2007.
Inspire Record 731668 DOI 10.17182/hepdata.57287

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons from heavy flavor (charm and bottom) decays for 0.3 < p_T < 9 GeV/c at midrapidity (|y| < 0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV. The nuclear modification factor R_AA relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC. A large azimuthal anisotropy, v_2, with respect to the reaction plane is observed for 0.5 < p_T < 5 GeV/c indicating non-zero heavy flavor elliptic flow. Both R_AA and v_2 show a p_T dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R_AA(p_T) and v_2(p_T) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid.

0 data tables match query

Measurement of D^0, D^+, D_s^+ and D^{*+} Production in Fixed Target 920 GeV Proton-Nucleus Collisions

The HERA-B collaboration Abt, I. ; Adams, M. ; Agari, M. ; et al.
Eur.Phys.J.C 52 (2007) 531-542, 2007.
Inspire Record 757982 DOI 10.17182/hepdata.57312

The inclusive production cross sections of the charmed mesons D^0, D^+, D_s^+ and D^{*+} have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman's x variable are given for the central rapidity region and for transverse momenta up to $\pT=3.5$ GeV/$c$. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.

0 data tables match query

Measurement of the $b \bar b$ Production Cross Section in 920 GeV Fixed-Target Proton-Nucleus Collisions

The HERA-B collaboration Abt, I. ; Abyzov, A. ; Adams, M. ; et al.
Eur.Phys.J.C 26 (2003) 345-355, 2003.
Inspire Record 587753 DOI 10.17182/hepdata.57488

Using the HERA-B detector, the b-bbar production cross section has been measured in 920 GeV proton collisions on carbon and titanium targets. The b-bbar production was tagged via inclusive bottom quark decays into J/psi, by exploiting the longitudinal separation of J/psi->ll decay vertices from the primary proton-nucleus interaction. Both $e^+e^-$ and $\mu^+\mu^-$ channels have been reconstructed and the combined analysis yields the cross section $\sigma(b \bar b) = 32 ^{+14}_{-12} (stat) ^{+6}_{-7} (sys) nb/nucleon$.

0 data tables match query

J/psi and psi' production and their normal nuclear absorption in proton nucleus collisions at 400-GeV.

The NA50 collaboration Alessandro, B. ; Alexa, C. ; Arnaldi, R. ; et al.
Eur.Phys.J.C 48 (2006) 329, 2006.
Inspire Record 733916 DOI 10.17182/hepdata.57412

We report a new measurement of J/psi, psi' and Drell-Yan cross-sections, in the kinematical domain $-0.425&lt;y_{\rm cm}&lt;0.575$ and $-0.5&lt;\cos\theta_{\rm CS}&lt;0.5$, performed at the CERN-SPS using 400 GeV/c incident protons on Be, Al, Cu, Ag, W and Pb targets. The dependence of the charmonia production cross-sections on the size of the target nucleus allows to quantify the so-called normal nuclear absorption. In the framework of the Glauber model, this new measurement is combined with results previously obtained with the same apparatus, under different experimental conditions, and leads to a precise determination of the J/psi and psi' absorption cross-sections in the surrounding nuclear matter.

0 data tables match query

Balance Functions from Au+Au, d+Au, and p+p Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 82 (2010) 024905, 2010.
Inspire Record 855746 DOI 10.17182/hepdata.101340

Balance functions have been measured for charged particle pairs, identified charged pion pairs, and identified charged kaon pairs in Au+Au, d+Au, and p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, $\Delta \eta$, relative rapidity, $\Delta y$, relative azimuthal angle, $\Delta \phi$, and invariant relative momentum, $q_{\rm inv}$. In addition, balance functions are shown in terms of the three components of $q_{\rm inv}$: $q_{\rm long}$, $q_{\rm out}$, and $q_{\rm side}$. For charged particle pairs, the width of the balance function in terms of $\Delta \eta$ scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged particle and charged pion pairs, the balance functions widths in terms of $\Delta \eta$ and $\Delta y$ are narrower in central Au+Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained either by delayed hadronization or by limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged kaon pairs in terms of $\Delta y$ shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of $q_{\rm inv}$ narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.

0 data tables match query

Strange baryon resonance production in s(NN)**(1/2) = 200-GeV p + p and Au + Au collisions.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 132301, 2006.
Inspire Record 715471 DOI 10.17182/hepdata.102937

We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

0 data tables match query

Version 3
Deep sub-threshold {\phi} production and implications for the K+/K- freeze-out in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

0 data tables match query

Partonic flow and Phi-meson production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 112301, 2007.
Inspire Record 746872 DOI 10.17182/hepdata.98969

We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

0 data tables match query

Multiplicity and pseudorapidity distributions of photons in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 95 (2005) 062301, 2005.
Inspire Record 676188 DOI 10.17182/hepdata.98929

We present the first measurement of multiplicity and pseudorapidity distributions of photons in the pseudorapidity region 2.3 $\le$ $\eta$ $\le$ 3.7 for different centralities in Au + Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. We find that the photon yield in this pseudorapidity range scales with the number of participating nucleons at all collision centralities studied. The pseudorapidity distribution of photons, dominated by neutral pion decays, has been compared to those of identified charged pions, photons, and inclusive charged particles from heavy ion and nucleon-nucleon collisions at various energies. The photon production in the measured pseudorapidity region has been shown to be consistent with the energy and centrality independent limiting fragmentation scenario.

0 data tables match query

Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 100 (2008) 232003, 2008.
Inspire Record 763822 DOI 10.17182/hepdata.98970

We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.

0 data tables match query