Observation of pi^+pi^-pi^+pi^- Photoproduction in Ultra-Peripheral Heavy Ion Collisions at STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044901, 2010.
Inspire Record 838875 DOI 10.17182/hepdata.98963

We present a measurement of pi^+pi^-pi^+pi^- photonuclear production in ultra-peripheral Au-Au collisions at sqrt(s_{NN}) = 200 GeV from the STAR experiment. The pi^+pi^-pi^+pi^- final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi^+pi^-pi^+pi^- invariant mass spectrum of the coherent events exhibits a broad peak around 1540 pm 40 MeV/c^2 with a width of 570 pm 60 MeV/c^2, in agreement with the photoproduction data for the rho^0(1700). We do not observe a corresponding peak in the pi^+pi^- final state and measure an upper limit for the ratio of the branching fractions of the rho^0(1700) to pi^+pi^- and pi^+pi^-pi^+pi^- of 2.5 % at 90 % confidence level. The ratio of rho^0(1700) and rho^0(770) coherent production cross sections is measured to be 13.4 pm 0.8 (stat.) pm 4.4 (syst.) %.

0 data tables match query

Proton Lambda correlations in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 74 (2006) 064906, 2006.
Inspire Record 696676 DOI 10.17182/hepdata.98927

We report on p-Lambda, p-Lambda bar, p bar-Lambda and p bar-Lambda bar correlation functions constructed in central Au-Au collisions at sqrt(s_NN)=200GeV by the STAR experiment at RHIC. The proton and lambda source size is inferred from the p-Lambda and p bar-Lambda bar correlation functions. They are found to be smaller than the pion source size also measured by the STAR detector. This could be a consequence of the collision fireball's collective expansion. The p-Lambda bar and p bar-Lambda correlations, which are measured for the first time, exhibit a large anti-correlation. Annihilation channels and/or a negative real part of the spin-averaged scattering length must be included in the final-state interactions calculation to reproduce the measured correlation function.

0 data tables match query

Hadronic resonance production in $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 78 (2008) 044906, 2008.
Inspire Record 776722 DOI 10.17182/hepdata.97116

We present the first measurements of the $\rho(770)^0$, $K^*$(892), $\Delta$(1232)$^{++}$, $\Sigma$(1385), and $\Lambda$(1520) resonances in $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV, reconstructed via their hadronic decay channels using the STAR detector at RHIC. The masses and widths of these resonances are studied as a function of transverse momentum ($p_T$). We observe that the resonance spectra follow a generalized scaling law with the transverse mass ($m_T$). The $<p_T>$ of resonances in minimum bias collisions is compared to the $<p_T>$ of $\pi$, $K$, and $\bar{p}$. The $\rho^0/\pi^-$, $K^*/K^-$, $\Delta^{++}/p$, $\Sigma(1385)/\Lambda$, and $\Lambda(1520)/\Lambda$ ratios in $d$+Au collisions are compared to the measurements in minimum bias $p+p$ interactions, where we observe that both measurements are comparable. The nuclear modification factors ($R_{dAu}$) of the $\rho^0$, $K^*$, and $\Sigma^*$ scale with the number of binary collisions ($N_{bin}$) for $p_T >$ 1.2 GeV/$c$.

0 data tables match query

Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 690 (2010) 239-244, 2010.
Inspire Record 844983 DOI 10.17182/hepdata.97118

We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.

0 data tables match query

Search for CP violating top quark couplings in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
JHEP 07 (2023) 023, 2023.
Inspire Record 2082532 DOI 10.17182/hepdata.106001

Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The search uses two observables, $\mathcal{O}_1$ and $\mathcal{O}_3$, which are Lorentz scalars. The observable $\mathcal{O}_1$ is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while $\mathcal{O}_3$ consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.

0 data tables match query

Global $\Lambda$-hyperon polarization in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 104 (2021) L061901, 2021.
Inspire Record 1897216 DOI 10.17182/hepdata.110658

Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.

0 data tables match query

Beam-Energy Dependence of Directed Flow of Protons, Antiprotons and Pions in Au+Au Collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 162301, 2014.
Inspire Record 1277069 DOI 10.17182/hepdata.105867

Rapidity-odd directed flow($v_1$) measurements for charged pions, protons and antiprotons near mid-rapidity ($y=0$) are reported in $\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au + Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). At intermediate impact parameters, the proton and net-proton slope parameter $dv_1/dy|_{y=0}$ shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton $dv_1/dy|_{y=0}$ changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

0 data tables match query

Multi-strange baryon production in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 182301, 2004.
Inspire Record 624566 DOI 10.17182/hepdata.102321

The transverse mass spectra and mid-rapidity yields for $\Xi$s and $\Omega$s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to $\pi$, K, p and $\Lambda$s.

0 data tables match query

Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

0 data tables match query

Directed Flow of Identified Particles in Au + Au Collisions at $\sqrtsNN = 200$ GeV at RHIC

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 108 (2012) 202301, 2012.
Inspire Record 1081744 DOI 10.17182/hepdata.96905

STAR's measurements of directed flow ($v_1$) around midrapidity for $\pi^{\pm}$, K$^{\pm}$, K$_S^0$, $p$ and $\bar{p}$ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative $v_1(y)$ slope is observed for most of produced particles ($\pi^{\pm}$, K$^{\pm}$, K$_{S}^{0}$ and $\bar{p}$). In 5-30% central collisions a sizable difference is present between the $v_1(y)$ slope of protons and antiprotons, with the former being consistent with zero within errors. The $v_1$ excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of $v_1$ for both pions and protons, none of them can describe $v_1(y)$ for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the $v_1(y)$ slopes of protons and antiprotons.

0 data tables match query