(Anti-)Deuteron production in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 889, 2020.
Inspire Record 1784203 DOI 10.17182/hepdata.97183

The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at $\sqrt{s}=13$ TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity ($\rm{d} N_{ch}/\rm{d}\eta\sim26$) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM).

6 data tables match query

Transverse momentum distributions of deuterons in the INEL>0 pp collisions

Transverse momentum distributions of deuterons in the INEL pp collisions

Transverse momentum distributions of anti-deuterons in the INEL>0 pp collisions

More…

Underlying Event properties in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 04 (2020) 192, 2020.
Inspire Record 1762350 DOI 10.17182/hepdata.94414

This article reports measurements characterizing the Underlying Event (UE) associated with hard scatterings at midrapidity in pp collisions at $\sqrt{s}=13$ TeV. The hard scatterings are identified by the leading particle, the charged particle with the highest transverse momentum ($p_{\rm T}^{\rm leading}$) in the event. Charged-particle number and summed transverse-momentum densities are measured in different azimuthal regions defined with respect to the leading particle direction: Toward, Transverse, and Away. The Toward and Away regions contain the fragmentation products of the hard scatterings in addition to the UE contribution, whereas particles in the Transverse region are expected to originate predominantly from the UE. The study is performed as a function of $p_{\rm T}^{\rm leading}$ with three different $p_{\rm T}$ thresholds for the associated particles, $p_{\rm T}^{\rm min} >$ 0.15, 0.5, and 1.0 GeV/$c$. The charged-particle density in the Transverse region rises steeply for low values of $p_{\rm T}^{\rm leading}$ and reaches a plateau. The results confirm the trend that the charged-particle density in the Transverse region shows a stronger increase with $\sqrt{s}$ than the inclusive charged-particle density at midrapidity. The UE activity is increased by approximately 20% when going from 7 to 13 TeV. The plateau in the Transverse region ($5 < p_{\rm T}^{\rm leading} < ~ 40$ GeV/$c$ ) is further characterized by the probability distribution of its charged-particle multiplicity normalized to its average value (relative transverse activity, $R_{T}$) and the mean transverse momentum as a function of $R_{T}$. Experimental results are compared to model calculations using PYTHIA 8 and EPOS LHC. The overall agreement between models and data is within 30%. These measurements provide new insights on the interplay between hard scatterings and the associated UE in pp collisions.

0 data tables match query

Investigation of the p-$\Sigma^{0}$ interaction via femtoscopy in pp collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 805 (2020) 135419, 2020.
Inspire Record 1762369 DOI 10.17182/hepdata.94238

This Letter presents the first direct investigation of the p-$\Sigma^{0}$ interaction, using the femtoscopy technique in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV measured by the ALICE detector. The $\Sigma^{0}$ is reconstructed via the decay channel to $\Lambda \gamma$, and the subsequent decay of $\Lambda$ to p$\pi^-$. The photon is detected via the conversion in material to e$^{+}$e$^{-}$ pairs exploiting the unique capability of the ALICE detector to measure electrons at low transverse momenta. The measured p-$\Sigma^{0}$ correlation indicates a shallow strong interaction. The comparison of the data to several theoretical predictions obtained employing the $Correlation~Analysis~Tool~using~the~Schr\"odinger~Equation$ (CATS) and the Lednick\'y-Lyuboshits approach shows that the current experimental precision does not yet allow to discriminate between different models, as it is the case for the available scattering and hypernuclei data. Nevertheless, the p-$\Sigma^{0}$ correlation function is found to be sensitive to the strong interaction, and driven by the interplay of the different spin and isospin channels. This pioneering study demonstrates the feasibility of a femtoscopic measurement in the p-$\Sigma^{0}$ channel and with the expected larger data samples in LHC Run 3 and Run 4, the p-$\Sigma^{0}$ interaction will be constrained with high precision.

0 data tables match query

Dielectron and heavy-quark production in inelastic and high-multiplicity proton-proton collisions at $\sqrt{s_{\rm NN}}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 788 (2019) 505-518, 2019.
Inspire Record 1672788 DOI 10.17182/hepdata.85869

The measurement of dielectron production is presented as a function of invariant mass and transverse momentum ($p_{\rm T}$) at midrapidity ($|y_{\rm e}|<0.8$) in proton-proton (pp) collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at $\sqrt{s}=7$ TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=974\pm138(\rm{stat.})\pm140(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=79\pm14(\rm{stat.})\pm11(\rm{syst.})~\mu{\rm b}$ using PYTHIA simulations and ${\rm d}\sigma_{\rm c\bar{c}}/{\rm d}y|_{y=0}=1417\pm184(\rm{stat.})\pm204(\rm{syst.})~\mu{\rm b}$ and ${\rm d}\sigma_{\rm b\bar{b}}/{\rm d}y|_{y=0}=48\pm14(\rm{stat.})\pm7(\rm{syst.})~\mu{\rm b}$ for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various $p_{\rm T}$ intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of $p_{\rm T}$. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations.

0 data tables match query

Investigations of anisotropic flow using multi-particle azimuthal correlations in pp, p-Pb, Xe-Xe, and Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.Lett. 123 (2019) 142301, 2019.
Inspire Record 1723697 DOI 10.17182/hepdata.90955

Measurements of anisotropic flow coefficients ($v_n$) and their cross-correlations using two- and multi-particle cumulant methods are reported in collisions of pp at $\sqrt{s} = 13$ TeV, p-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV, Xe-Xe at $\sqrt{s_{_{\rm NN}}} = 5.44$ TeV, and Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV recorded with the ALICE detector. The multiplicity dependence of $v_n$ is studied in a very wide range from 20 to 3000 particles produced in the mid-rapidity region $|\eta|<0.8$ for the transverse momentum range $0.2 < p_{\rm T} < 3.0$ GeV/$c$. An ordering of the coefficients $v_2 > v_3 > v_4$ is found in pp and p-Pb collisions, similar to that seen in large collision systems, while a weak $v_2$ multiplicity dependence is observed relative to nucleus-nucleus collisions in the same multiplicity range. Using a novel subevent method, $v_{2}$ measured with four-particle cumulants is found to be compatible with that from six-particle cumulants in pp and p-Pb collisions. The magnitude of the correlation between $v_n^2$ and $v_m^2$, evaluated with the symmetric cumulants SC$(m,n)$ is observed to be positive at all multiplicities for $v_2$ and $v_4$, while for $v_2$ and $v_3$ it is negative and changes sign for multiplicities below 100, which may indicate a different $v_n$ fluctuation pattern in this multiplicity range. The observed long-range multi-particle azimuthal correlations in high multiplicity pp and p-Pb collisions can neither be described by PYTHIA 8 nor by IP-Glasma+MUSIC+UrQMD model calculations, and hence provide new insights into the understanding of collective effects in small collision systems.

0 data tables match query

Study of the $\Lambda$-$\Lambda$ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 797 (2019) 134822, 2019.
Inspire Record 1735349 DOI 10.17182/hepdata.90845

This work presents new constraints on the existence and the binding energy of a possible $\Lambda$-$\Lambda$ bound state, the H-dibaryon, derived from $\Lambda$-$\Lambda$ femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at $\sqrt{s}=13$ TeV and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV, combined with previously published results from p-Pb collisions at $\sqrt{s}=7$ TeV. The $\Lambda$-$\Lambda$ scattering parameter space, spanned by the inverse scattering length $f_0^{-1}$ and the effective range $d_0$, is constrained by comparing the measured $\Lambda$-$\Lambda$ correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the $\Lambda$-$\Lambda$ interaction. The region in the $(f_0^{-1},d_0)$ plane which would accommodate a $\Lambda$-$\Lambda$ bound state is substantially restricted compared to previous studies. The binding energy of the possible $\Lambda$-$\Lambda$ bound state is estimated within an effective-range expansion approach and is found to be $B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\mathrm{(stat)}^{+1.8}_{-1.0}\mathrm{(syst)}$ MeV.

0 data tables match query

Measurement of charged jet cross section in $pp$ collisions at ${\sqrt{s}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.D 100 (2019) 092004, 2019.
Inspire Record 1733689 DOI 10.17182/hepdata.91239

The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of $5<p_\mathrm{T}<100\ \mathrm{GeV}/c$ in pp collisions at the center-of-mass energy of $\sqrt{s} = 5.02\ \mathrm{TeV}$ with the ALICE detector. The jets are reconstructed using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R=0.2$, $0.3$, $0.4$, and $0.6$ in the pseudorapidity range $|\eta|< 0.9-R$. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low $p_\mathrm{T}$ to high $p_\mathrm{T}$ and saturate at high $p_\mathrm{T}$, indicating that jet collimation is larger at high $p_\mathrm{T}$ than at low $p_\mathrm{T}$. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb$-$Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC.

0 data tables match query

Search for dark matter produced in association with a single top quark and an energetic $W$ boson in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 603, 2023.
Inspire Record 2514114 DOI 10.17182/hepdata.136029

This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.

0 data tables match query

Measurement of the cross-sections of the electroweak and total production of a $Z \gamma$ pair in association with two jets in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 846 (2023) 138222, 2023.
Inspire Record 2663725 DOI 10.17182/hepdata.141625

This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a $Z \gamma$ pair in association with two jets. The analysis uses 140 fb$^{-1}$ of LHC proton-proton collision data taken at $\sqrt{s}$=13 TeV recorded by the ATLAS detector during the years 2015-2018. Events with a $Z$ boson candidate decaying into either an $e^+e^-$ or $\mu^+ \mu^-$ pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and a large rapidity gap between the two jets and is measured with an observed and expected significance well above five standard deviations. The fiducial $pp \rightarrow Z \gamma jj$ cross-section for the electroweak production is measured to be 3.6 $\pm$ 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be $16.8^{+2.0}_{-1.8}$ fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions.

0 data tables match query

Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 01 (2021) 033, 2021.
Inspire Record 1801434 DOI 10.17182/hepdata.103063

Differential cross-sections are measured for top-quark pair production in the all-hadronic decay mode, using proton$-$proton collision events collected by the ATLAS experiment in which all six decay jets are separately resolved. Absolute and normalised single- and double-differential cross-sections are measured at particle and parton level as a function of various kinematic variables. Emphasis is placed on well-measured observables in fully reconstructed final states, as well as on the study of correlations between the top-quark pair system and additional jet radiation identified in the event. The study is performed using data from proton$-$proton collisions at $\sqrt{s}=13~\mbox{TeV}$ collected by the ATLAS detector at CERN's Large Hadron Collider in 2015 and 2016, corresponding to an integrated luminosity of $\mbox{36.1 fb}^{-1}$. The rapidities of the individual top quarks and of the top-quark pair are well modelled by several independent event generators. Significant mismodelling is observed in the transverse momenta of the leading three jet emissions, while the leading top-quark transverse momentum and top-quark pair transverse momentum are both found to be incompatible with several theoretical predictions.

0 data tables match query