Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

0 data tables match query

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

0 data tables match query

Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 73, 2020.
Inspire Record 1762209 DOI 10.17182/hepdata.94802

The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.

0 data tables match query

Measurement of the cross-section and charge asymmetry of $W$ bosons produced in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 760, 2019.
Inspire Record 1729240 DOI 10.17182/hepdata.89322

This paper presents measurements of the $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\nu$ cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $20.2~\mbox{fb$^{-1}$}$. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.

0 data tables match query

Measurement of the ratio of cross sections for inclusive isolated-photon production in $pp$ collisions at $\sqrt s = 13$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 093, 2019.
Inspire Record 1717495 DOI 10.17182/hepdata.89370

The ratio of the cross sections for inclusive isolated-photon production in $pp$ collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb$^{-1}$ and 20.2 fb$^{-1}$, respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of $2.5$ ($5$) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for $Z$ boson production at 13 and 8 TeV using the decay channels $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

0 data tables match query

Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 847, 2019.
Inspire Record 1744201 DOI 10.17182/hepdata.90953

The inclusive cross-section for jet production in association with a Z boson decaying into an electron-positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb$^{-1}$ of $\sqrt s = 8$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations.

0 data tables match query

Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 076, 2020.
Inspire Record 1797444 DOI 10.17182/hepdata.97372

Measurement of Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity $-4 < \eta_{\mu} < -2.5$ and transverse momentum $p_{\rm T}^{\mu} > 20$ GeV/$c$ in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass $60 < m^{\mu\mu} < 120$ GeV$c^2$ and rapidity $2.5 < y_{cms}^{\mu\mu} < 4$. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ($-4.46< y_{cms}^{\mu\mu}<-2.96$) and forward ($2.03< y_{cms}^{\mu\mu}<3.53$) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a $3.4\sigma$ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.

0 data tables match query

Inclusive quarkonium production at forward rapidity in pp collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 184, 2016.
Inspire Record 1395099 DOI 10.17182/hepdata.72936

We report on the inclusive production cross sections of J/$\psi$, $\psi$(2S), $\Upsilon$(1S), $\Upsilon$(2S) and $\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\sqrt{s}=8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the $p_{\rm T}$ ranges $0<p_{\rm T}<20$ GeV/$c$ for J/$\psi$, $0<p_{\rm T}<12$ GeV/$c$ for all other resonances, and for $2.5<y<4$. The cross sections, integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\sigma_{{\rm J}/\psi} = 8.98\pm0.04\pm0.82$ $\mu$b, $\sigma_{\psi{\rm (2S)}} = 1.23\pm0.08\pm0.22$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 71\pm6\pm7$ nb, $\sigma_{\Upsilon{\rm(2S)}} = 26\pm5\pm4$ nb and $\sigma_{\Upsilon{\rm(3S)}} = 9\pm4\pm1$ nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma$, with measurements performed by the LHCb collaboration in the same rapidity range.

0 data tables match query

Charged-particle multiplicities in proton-proton collisions at $\sqrt{s}$ = 0.9 to 8 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 33, 2017.
Inspire Record 1394854 DOI 10.17182/hepdata.77011

A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\eta|<2$, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\eta|<1$. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\eta|<$ 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

0 data tables match query

Inclusive $\Upsilon$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 806 (2020) 135486, 2020.
Inspire Record 1762360 DOI 10.17182/hepdata.95539

$\Upsilon$ production in p-Pb interactions is studied at the centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals $2.03 < y_{\rm{cms}} < 3.53$ and $-4.46 < y_{\rm{cms}} < -2.96$, down to zero transverse momentum. In this work, results on the inclusive $\Upsilon(1\rm{S})$ production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the $\Upsilon(1\rm{S})$ yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the $\Upsilon(2\rm{S})$ nuclear modification factor is also evaluated, suggesting a suppression similar to that of the $\Upsilon(1\rm{S})$. A first measurement of the $\Upsilon(3\rm{S})$ has also been performed. Finally, results are compared with previous measurements performed by ALICE in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV and with theoretical calculations.

0 data tables match query

Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.Lett. 124 (2020) 092301, 2020.
Inspire Record 1737592 DOI 10.17182/hepdata.93732

The study of the strength and behaviour of the antikaon-nucleon ($\mathrm{\overline{K}N}$) interaction constitutes one of the key focuses of the strangeness sector in low-energy Quantum Chromodynamics (QCD). In this letter a unique high-precision measurement of the strong interaction between kaons and protons, close and above the kinematic threshold, is presented. The femtoscopic measurements of the correlation function at low pair-frame relative momentum of (K$^+$ p $\oplus$ K$^-$ $\overline{\mathrm{p}}$) and (K$^-$ p $\oplus$ K$^+$ $\overline{\mathrm{p}}$) pairs measured in pp collisions at $\sqrt{s}$ = 5, 7 and 13 TeV are reported. A structure observed around a relative momentum of 58 MeV/$c$ in the measured correlation function of (K$^-$ p $\oplus$ K$^+$ $\overline{\mathrm{p}}$) with a significance of 4.4. $\sigma$ constitutes the first experimental evidence for the opening of the $(\mathrm{\overline{K}^0 n} \oplus \mathrm{K^0 \overline{n}})$ isospin breaking channel due to the mass difference between charged and neutral kaons. The measured correlation functions have been compared to J\"{u}lich and Kyoto models in addition to the Coulomb potential. The high-precision data at low relative momenta presented in this work prove femtoscopy to be a powerful complementary tool to scattering experiments and provide new constraints above the $\mathrm{\overline{K}N}$ threshold for low-energy QCD chiral models.

0 data tables match query

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

0 data tables match query

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

0 data tables match query

Production of light-flavor hadrons in pp collisions at $\sqrt{s}$ = 7 and $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 256, 2021.
Inspire Record 1797443 DOI 10.17182/hepdata.100303

The production of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}^{*}(892)^{0}$, $\rm{p}$, $\phi(1020)$, $\Lambda$, $\Xi^{-}$, $\Omega^{-}$, and their antiparticles was measured in inelastic proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm{T}}$) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $p_{\rm{T}}$ distributions of $\rm{K}^{0}_{S}$, $\Lambda$, and $\overline{\Lambda}$ in inelastic pp collisions at $\sqrt{s}$ = 7 TeV are reported here for the first time. The $p_{\rm{T}}$ distributions are studied at midrapidity within the transverse momentum range $0\leq p_{\rm{T}}\leq20$ GeV/$c$, depending on the particle species. The $p_{\rm{T}}$ spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $\sqrt{s}$ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $p_{\rm{T}}$ with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $x_{\rm{T}}\equiv2p_{\rm{T}}/\sqrt{s}$ scaling properties of hadron production are also studied. As the collision energy increases from $\sqrt{s}$ = 7 to 13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $\sqrt{s}$, while ratios for multi-strange hadrons indicate enhancements. The $p_{\rm{T}}$-differential cross sections of $\pi^{\pm}$, $\rm{K}^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $\pi^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) at high $p_{\rm{T}}$.

0 data tables match query

Measurement of the inclusive J/$\psi$ polarization at forward rapidity in pp collisions at $\sqrt{s} = 8$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 562, 2018.
Inspire Record 1672801 DOI 10.17182/hepdata.83784

We report on the measurement of the inclusive J/$\psi$ polarization parameters in pp collisions at a center of mass energy $\sqrt{s} = 8$ TeV with the ALICE detector at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 1.23 pb$^{-1}$. J/$\psi$ resonances are reconstructed in their di-muon decay channel in the rapidity interval $2.5 < y < 4.0$ and over the transverse-momentum interval $2 < p_{\rm T} < 15$ GeV/$c$. The three polarization parameters ($\lambda_\theta$, $\lambda_\varphi$, $\lambda_{\theta\varphi}$) are measured as a function of $p_{\rm T}$ both in the helicity and Collins-Soper reference frames. The measured J/$\psi$ polarization parameters are found to be compatible with zero within uncertainties, contrary to expectations from all available predictions. The results are compared with the measurement in pp collisions at $\sqrt{s} = 7$ TeV.

0 data tables match query

Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at $\mathbf{\sqrt{\textit s}}$ = 13 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 319-329, 2016.
Inspire Record 1395253 DOI 10.17182/hepdata.70847

The pseudorapidity ($\eta$) and transverse-momentum ($p_{\rm T}$) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy $\sqrt{s}$ = 13 TeV. The pseudorapidity distribution in $|\eta|<$ 1.8 is reported for inelastic events and for events with at least one charged particle in $|\eta|<$ 1. The pseudorapidity density of charged particles produced in the pseudorapidity region $|\eta|<$ 0.5 is 5.31 $\pm$ 0.18 and 6.46 $\pm$ 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 $<$ $p_{\rm T}$ $<$ 20 GeV/c and $|\eta|<$ 0.8 for events with at least one charged particle in $|\eta|<$ 1. The correlation between transverse momentum and particle multiplicity is also investigated by studying the evolution of the spectra with event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

0 data tables match query

Direct photon production at low transverse momentum in proton-proton collisions at $\mathbf{\sqrt{s}=2.76}$ and 8 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024912, 2019.
Inspire Record 1664312 DOI 10.17182/hepdata.88395

Measurements of inclusive and direct photon production at mid-rapidity in pp collisions at $\sqrt{s}=2.76$ and 8 TeV are presented by the ALICE experiment at the LHC. The results are reported in transverse momentum ranges of $0.4<p_{T}<10$ GeV/$c$ and $0.3<p_{T}<16$ GeV/$c$, respectively. Photons are detected with the electromagnetic calorimeter~(EMCal) and via reconstruction of e$^+$e$^-$ pairs from conversions in the ALICE detector material using the central tracking system. For the final measurement of the inclusive photon spectra the results are combined in the overlapping $p_{T}$ interval of both methods. Direct photon spectra, or their upper limits at 90% C.L. are extracted using the direct photon excess ratio $R_{\gamma}$, which quantifies the ratio of inclusive photons over decay photons generated with a decay-photon simulation. An additional hybrid method, combining photons reconstructed from conversions with those identified in the EMCal, is used for the combination of the direct photon excess ratio $R_{\gamma}$, as well as the extraction of direct photon spectra or their upper limits. While no significant signal of direct photons is seen over the full $p_{T}$ range, $R_{\gamma}$ for $p_{T}>7$ GeV/$c$ is at least one $\sigma$ above unity and consistent with expectations from next-to-leading order pQCD calculations.

0 data tables match query

$\rm{K}^{*}(\rm{892})^{0}$ and $\phi(1020)$ production at midrapidity in pp collisions at $\sqrt{s}$ = 8 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.C 102 (2020) 024912, 2020.
Inspire Record 1762364 DOI 10.17182/hepdata.99928

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ in pp collisions at $\sqrt{s}$ = 8 TeV was measured using Run 1 data collected by the ALICE collaboration at the LHC. The $p_{\rm{T}}$-differential yields d$^{\rm 2}N$/d$y$d$p_{\rm{T}}$ in the range $0 < p_{\rm{T}} < 20$ GeV/$c$ for $\rm{K}^{*0}$ and $0.4 < p_{\rm{T}} < 16$ GeV/$c$ for $\phi$ have been measured at midrapidity, $|y| < 0.5$. Moreover, improved measurements of the $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ at $\sqrt{s} = 7$TeV are presented. The collision energy dependence of $p_{\rm{T}}$ distributions, $p_{\rm{T}}$-integrated yields and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are found to be similar to those measured at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The $p_{\rm{T}}$-differential yields of $\rm{K}^{*0}$ and $\phi$ in pp collisions at $\sqrt{s} = 8$ TeV are compared with the expectations of different Monte Carlo event generators.

0 data tables match query

Inclusive J/$\psi$ production at forward and backward rapidity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 07 (2018) 160, 2018.
Inspire Record 1672807 DOI 10.17182/hepdata.83702

Inclusive J/$\psi$ production is studied in p-Pb interactions at a centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}}=8.16$ TeV, using the ALICE detector at the CERN LHC. The J/$\psi$ meson is reconstructed, via its decay to a muon pair, in the centre-of-mass rapidity intervals $2.03<y_{\rm {cms}}<3.53$ and $-4.46<y_{\rm {cms}}<-2.96$, where positive and negative $y_{\rm {cms}}$ refer to the p-going and Pb-going direction, respectively. The transverse momentum coverage is $p_{\rm T}<20$ GeV/$c$. In this paper, $y_{\rm cms}$- and $p_{\rm T}$-differential cross sections for inclusive J/$\psi$ production are presented, and the corresponding nuclear modification factors $R_{\rm pPb}$ are shown. Forward results show a suppression of the J/$\psi$ yield with respect to pp collisions, concentrated in the region $p_{\rm T}\lesssim 5$ GeV/$c$. At backward rapidity no significant suppression is observed. The results are compared to previous measurements by ALICE in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and to theoretical calculations. Finally, the ratios $R_{\rm FB}$ between forward- and backward-$y_{\rm {cms}}$ $R_{\rm pPb}$ values are shown and discussed.

0 data tables match query

Measurement of nuclear effects on $\psi\rm{(2S)}$ production in p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2020) 237, 2020.
Inspire Record 1785315 DOI 10.17182/hepdata.96029

Inclusive $\psi$(2S) production is measured in p-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm{NN}}}=8.16$ TeV, using the ALICE detector at the CERN LHC. The production of $\psi$(2S) is studied at forward ($2.03 < y_{\rm cms} < 3.53$) and backward ($-4.46 < y_{\rm cms} < -2.96$) centre-of-mass rapidity and for transverse momentum $p_{\rm{T}}$ $<$ 12 GeV/$c$ via the decay to muon pairs. In this paper, we report the integrated as well as the $y_{\rm cms}$- and $p_{\rm T}$-differential inclusive production cross sections. Nuclear effects on $\psi$(2S) production are studied via the determination of the nuclear modification factor that shows a strong suppression at both forward and backward centre-of-mass rapidities. Comparisons with corresponding results for inclusive J/$\psi$ show a similar suppression for the two states at forward rapidity (p-going direction), but a stronger suppression for $\psi$(2S) at backward rapidity (Pb-going direction). As a function of $p_{\rm T}$, no clear dependence of the nuclear modification factor is found. The relative size of nuclear effects on $\psi$(2S) production compared to J/$\psi$ is also studied via the double ratio of production cross sections $[\sigma_{\psi(2S)}/\sigma_{\rm{J/}\psi}]_{\rm pPb}/[\sigma_{\psi(2S)}/\sigma_{\rm{J/}\psi}]_{\rm pp}$ between p-Pb and pp collisions. The results are compared with theoretical models that include various effects related to the initial and final state of the collision system and also with previous measurements at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV.

0 data tables match query

J/$\psi$ production as a function of charged-particle multiplicity in p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}}~=~8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 162, 2020.
Inspire Record 1792996 DOI 10.17182/hepdata.97018

Inclusive J/$\psi$ yields and average transverse momenta in p-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 8.16 TeV are measured as a function of the charged-particle pseudorapidity density with ALICE. The J/$\psi$ mesons are reconstructed at forward $(2.03 < y_{\rm cms} < 3.53)$ and backward ($-4.46 < y_{\rm cms} < -2.96$) center-of-mass rapidity in their dimuon decay channel while the charged-particle pseudorapidity density is measured around midrapidity. The J/$\psi$ yields at forward and backward rapidity normalized to their respective average values increase with the normalized charged-particle pseudorapidity density, the former showing a weaker increase than the latter. The normalized average transverse momenta at forward and backward rapidity manifest a steady increase from low to high charged-particle pseudorapidity density with a saturation beyond the average value.

0 data tables match query

Centrality dependence of J/$\psi$ and $\psi$(2S) production and nuclear modification in p-Pb collisions at $\sqrt{s_{\rm NN}} =$ 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 02 (2021) 002, 2021.
Inspire Record 1811102 DOI 10.17182/hepdata.100166

The inclusive production of the J/$\psi$ and $\psi$(2S) charmonium states is studied as a function of centrality in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 8.16$ TeV at the LHC. The measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-mass rapidity intervals $-4.46 < y_{\rm cms} < -2.96$ (Pb-going direction) and $2.03 < y_{\rm cms} < 3.53$ (p-going direction), down to zero transverse momentum ($p_{\rm T}$). The J/$\psi$ and $\psi$(2S) production cross sections are evaluated as a function of the collision centrality, estimated through the energy deposited in the zero degree calorimeter located in the Pb-going direction. The $p_{\rm T}$-differential J/$\psi$ production cross section is measured at backward and forward rapidity for several centrality classes, together with the corresponding average $\langle p_{\rm T} \rangle$ and $\langle p^{2}_{\rm T} \rangle$ values. The nuclear effects affecting the production of both charmonium states are studied using the nuclear modification factor. In the p-going direction, a suppression of the production of both charmonium states is observed, which seems to increase from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence is different for the two states: the nuclear modification factor of the J/$\psi$ increases from below unity in peripheral collisions to above unity in central collisions, while for the $\psi$(2S) it stays below or consistent with unity for all centralities with no significant centrality dependence. The results are compared with measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and no significant dependence on the energy of the collision is observed. Finally, the results are compared with theoretical models implementing various nuclear matter effects.

0 data tables match query