J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 86 (2012) 064901, 2012.
Inspire Record 1127261 DOI 10.17182/hepdata.143112

We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.

0 data tables match query

Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 87 (2013) 034904, 2013.
Inspire Record 1102930 DOI 10.17182/hepdata.142077

We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T<2 GeV/c then an enhancement (R_dAu>1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.

0 data tables match query

Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

0 data tables match query

Nuclear-Modification Factor for Open-Heavy-Flavor Production at Forward Rapidity in Cu+Cu Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 86 (2012) 024909, 2012.
Inspire Record 1102910 DOI 10.17182/hepdata.142604

Background: Heavy-flavor production in p+p collisions tests perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p+p results, quantified with the nuclear-modification factor (R_AA), provides information on both cold- and hot-nuclear-matter effects. Purpose: Determine transverse-momentum, pt, spectra and the corresponding R_AA for muons from heavy-flavor mesons decay in p+p and Cu+Cu collisions at sqrt(s_NN)=200 GeV and y=1.65. Method: Results are obtained using the semi-leptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p_T spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte-Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p+p collisions at sqrt{s}=200 GeV, integrated over pt and in the rapidity range 1.4<y<1.9 is found to be dsigma_ccbar/dy = 0.139 +/- 0.029 (stat) ^{+0.051}_{-0.058} (syst) mb. This result is consistent with calculations and with expectations based on the corresponding midrapidity charm-production cross section measured earlier by PHENIX. The R_AA for heavy-flavor muons in Cu+Cu collisions is measured in three centrality intervals for 1<pt<4 GeV/c. Suppression relative to binary-collision scaling (R_AA<1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured heavy-flavor yield in p+p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu+Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.

0 data tables match query

B-meson production at forward and backward rapidity in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 96 (2017) 064901, 2017.
Inspire Record 1512141 DOI 10.17182/hepdata.141715

The fraction of $J/\psi$ mesons which come from B-meson decay, $\textrm{F}_{B{\rightarrow}J/\psi}$, is measured for J/$\psi$ rapidity \mbox{$1.2<|y|<2.2$} and $p_T>0$ in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV with the PHENIX detector. The extracted fraction is $\textrm{F}_{B{\rightarrow}J/\psi}$ = 0.025 $\pm$ 0.006(stat) $\pm$ 0.010(syst) for $p$+$p$ collisions. For Cu+Au collisions, $\textrm{F}_{B{\rightarrow}J/\psi}$ is 0.094 $\pm$ 0.028(stat) $\pm$ 0.037(syst) in the Au-going direction ($-2.2<y<-1.2$) and 0.089 $\pm$ 0.026(stat) $\pm$ 0.040(syst) in the Cu-going direction ($1.2<y<2.2$). The nuclear modification factor, $R_{\rm CuAu}$, of B mesons in Cu+Au collisions is consistent with binary scaling of measured yields in $p$+$p$ at both forward and backward rapidity.

0 data tables match query

Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 107 (2011) 172301, 2011.
Inspire Record 901235 DOI 10.17182/hepdata.143197

Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p_T, and eta points to cold nuclear matter effects arising at high parton densities.

0 data tables match query

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

0 data tables match query

Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 123 (2019) 122001, 2019.
Inspire Record 1725616 DOI 10.17182/hepdata.141938

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{\uparrow}+p$, $p^{\uparrow}+$Al and $p^{\uparrow}+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<\eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in $p^{\uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.

0 data tables match query

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

0 data tables match query

Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 107 (2011) 142301, 2011.
Inspire Record 871818 DOI 10.17182/hepdata.146014

We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) = 200 GeV recorded by the PHENIX experiment and compare with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. To remove model dependent systematic uncertainties we also compare the data to a simple geometric model. We find that calculations where the nuclear modification is linear or exponential in the density weighted longitudinal thickness are difficult to reconcile with the forward rapidity data.

0 data tables match query