Comparison of transverse single-spin asymmetries for forward $\pi^{0}$ production in polarized $pp$, $p\rm{Al}$ and $p\rm{Au}$ collisions at nucleon pair c.m. energy $\sqrt{s_{\mathrm{NN}}}= 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 103 (2021) 072005, 2021.
Inspire Record 1836342 DOI 10.17182/hepdata.100167

The STAR Collaboration reports a measurement of the transverse single-spin asymmetries, $A_{N}$, for neutral pions produced in polarized proton collisions with protons ($pp$), with aluminum nuclei ($p\rm{Al}$) and with gold nuclei ($p\rm{Au}$) at a nucleon-nucleon center-of-mass energy of 200 GeV. Neutral pions are observed in the forward direction relative to the transversely polarized proton beam, in the pseudo-rapidity region $2.7<\eta<3.8$. Results are presented for $\pi^0$s observed in the STAR FMS electromagnetic calorimeter in narrow Feynman x ($x_F$) and transverse momentum ($p_T$) bins, spanning the range $0.17<x_F<0.81$ and $1.7<p_{T}<6.0$ GeV/$c$. For fixed $x_F<0.47$, the asymmetries are found to rise with increasing transverse momentum. For larger $x_F$, the asymmetry flattens or falls as ${p_T}$ increases. Parametrizing the ratio $r(A) \equiv A_N(pA)/A_N(pp)=A^P$ over the kinematic range, the ratio $r(A)$ is found to depend only weakly on $A$, with ${\langle}P{\rangle} = -0.027 \pm 0.005$. No significant difference in $P$ is observed between the low-$p_T$ region, $p_T<2.5$ GeV/$c$, where gluon saturation effects may play a role, and the high-$p_T$ region, $p_T>2.5$ GeV/$c$. It is further observed that the value of $A_N$ is significantly larger for events with a large-$p_T$ isolated $\pi^0$ than for events with a non-isolated $\pi^0$ accompanied by additional jet-like fragments. The nuclear dependence $r(A)$ is similar for isolated and non-isolated $\pi^0$ events.

0 data tables match query

Measurements of the transverse-momentum-dependent cross sections of $J/\psi$ production at mid-rapidity in proton+proton collisions at $\sqrt{s} =$ 510 and 500 GeV with the STAR detector

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 100 (2019) 052009, 2019.
Inspire Record 1735184 DOI 10.17182/hepdata.105629

We present measurements of the differential production cross sections of the inclusive $J/\psi$ meson as a function of transverse momentum ($p_{T}^{J/\psi}$) using the $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$ decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the $\mu^{+}\mu^{-}$ channel is for 0 $< p_{T}^{J/\psi} <$ 9 GeV/$c$ and rapidity range $|y^{J/\psi}| < $ 0.4, and that from the $e^{+}e^{-}$ channel is for 4 $< p_{T}^{J/\psi} <$ 20 GeV/$c$ and $|y^{J/\psi}| < $ 1.0. The $\psi(2S)$ to $J/\psi$ ratio is also measured for 4 $< p_{T}^{\rm meson} <$ 12 GeV/$c$ through the $e^{+}e^{-}$ decay channel. Model calculations, which incorporate different approaches toward the $J/\psi$ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties. A more discriminating comparison to theoretical models at low $p_T$ can be performed in the future, if the calculations are carried out within our fiducial volume, eliminating the uncertainty due to the $J/\psi$ polarization.

0 data tables match query

Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at $\sqrt{s_{NN}}=$ 27, 54.4, and 200 GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 127 (2021) 262301, 2021.
Inspire Record 1866196 DOI 10.17182/hepdata.105720

According to first-principle lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region μB ≤ T c. In this range the ratio, C6=C2, of net-baryon distributions are predicted to be negative. In this Letter, we report the first measurement of the midrapidity net-proton C6=C2 from 27, 54.4, and 200 GeV Au þ Au collisions at the Relativistic Heavy Ion Collider (RHIC). The dependence on collision centrality and kinematic acceptance in (p T , y) are analyzed. While for 27 and 54.4 GeV collisions the C6=C2 values are close to zero within uncertainties, it is observed that for 200 GeV collisions, the C6=C2 ratio becomes progressively negative from peripheral to central collisions. Transport model calculations without critical dynamics predict mostly positive values except for the most central collisions within uncertainties. These observations seem to favor a smooth crossover in the high-energy nuclear collisions at top RHIC energy.

0 data tables match query

Measurements of low-$p_{\rm T}$ electrons from semileptonic heavy-flavour hadron decays at mid-rapidity in pp and Pb-Pb collisions at $\mathbf{\sqrt{{\it s}_\mathrm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 10 (2018) 061, 2018.
Inspire Record 1672811 DOI 10.17182/hepdata.85021

Transverse-momentum ($p_{\rm T}$) differential yields of electrons from semileptonic heavy-flavour hadron decays have been measured in the most central (0-10%) and in semi-central (20-40%) Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. The corresponding production cross section in pp collisions has been measured at the same energy with substantially reduced systematic uncertainties with respect to previously published results. The modification of the yield in Pb-Pb collisions with respect to the expectation from an incoherent superposition of nucleon-nucleon collisions is quantified at mid-rapidity ($|y|$ $<$ 0.8) in the $p_{\rm T}$ interval 0.5-3 GeV/$c$ via the nuclear modification factor, $R_{\rm AA}$. This paper extends the $p_{\rm T}$ reach of the $R_{\rm AA}$ measurement towards significantly lower values with respect to a previous publication. In Pb-Pb collisions the $p_{\rm T}$-differential measurements of yields at low $p_{\rm T}$ are essential to investigate the scaling of heavy-flavour production with the number of binary nucleon-nucleon collisions. Heavy-quark hadronization, a collective expansion and even initial-state effects, such as the nuclear modification of the Parton Distribution Functions, are also expected to have a significant effect on the measured distribution.

0 data tables match query

Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

0 data tables match query

Version 2
Collision energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton and net-kaon multiplicity distributions in Au+Au collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 100 (2019) 014902, 2019.
Inspire Record 1724809 DOI 10.17182/hepdata.105908

We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton, and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at \sNN~= 7.7-200 GeV. Within the available acceptance of $|\eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at \sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations, and provide new insights on the energy dependence of baryon-strangeness correlations. An erratum has been added to address the issue of self-correlation in the previously considered efficiency correction for off-diagonal cumulant measurement. Previously considered unidentified (net-)charge correlation results ($\sigma^{11}_{Q,p}$ and $\sigma^{11}_{Q,k})$ are now replaced with identified (net-)charge correlation ($\sigma^{11}_{Q^{PID},p}$ and $\sigma^{11}_{Q^{PID},k}$)

0 data tables match query

Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at <math altimg="si1.svg"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi mathvariant="normal">NN</mi></mrow></msub></mrow></msqrt><mo linebreak="goodbreak" linebreakstyle="after">=</mo><mn>2.76</mn></math> TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 807 (2020) 135564, 2020.
Inspire Record 1762338 DOI 10.17182/hepdata.95244

Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions.

0 data tables match query

Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

0 data tables match query

Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV with the STAR detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, Jaroslav ; et al.
JHEP 06 (2023) 176, 2023.
Inspire Record 2641480 DOI 10.17182/hepdata.139080

We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity ($|y|<$ 0.7) in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Invariant yields of HFEs are measured for the transverse momentum range of $3.5 < p_{\rm T} < 9$ GeV/$c$ in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in $p$+$p$ collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.

0 data tables match query

Measurement of $\rm ^4_{\Lambda}H$ and $\rm ^4_{\Lambda}He$ binding energy in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 834 (2022) 137449, 2022.
Inspire Record 2105274 DOI 10.17182/hepdata.132662

Measurements of mass and $\Lambda$ binding energy of $\rm ^4_{\Lambda}H$ and $\rm ^4_{\Lambda}He$ in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=3$ GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The $\Lambda$ binding energies are measured to be $\rm 2.22\pm0.06(stat.) \pm0.14(syst.)$ MeV and $\rm 2.38\pm0.13(stat.) \pm0.12(syst.)$ MeV for $\rm ^4_{\Lambda}H$ and $\rm ^4_{\Lambda}He$, respectively. The measured $\Lambda$ binding-energy difference is $\rm 0.16\pm0.14(stat.)\pm0.10(syst.)$ MeV for ground states. Combined with the $\gamma$-ray transition energies, the binding-energy difference for excited states is $\rm -0.16\pm0.14(stat.)\pm0.10(syst.)$ MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the $\Lambda$ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in $\rm \Delta B_{\Lambda}^4(1_{exc}^{+})\approx -\Delta B_{\Lambda}^4(0_{g.s.}^{+})<0$ and present a new method for the study of CSB effect using relativistic heavy-ion collisions.

0 data tables match query