Systematics of midrapidity transverse energy distributions in limited apertures from p+Be to Au+Au collisions at relativistic energies

Abbott, T. ; Ahle, L. ; Akiba, Y. ; et al.
Phys.Rev.C 63 (2001) 064602, 2001.
Inspire Record 556107 DOI 10.17182/hepdata.25404

Measurements of the A dependence and pseudorapidity interval (δη) dependence of midrapidity ET distributions in a half-azimuth (Δφ=π) electromagnetic calorimeter are presented for p+Be, p+Au, O+Cu, Si+Au, and Au+Au collisions at the BNL-AGS (Alternating-Gradient Synchrotron). The shapes of the upper edges of midrapidity ET distributions as a function of the pseudorapidity interval δη in the range 0.3 to 1.3, roughly centered at midrapidity, are observed to vary with δη, like multiplicity—the upper edges of the distributions flatten as δη is reduced. At the typical fixed upper percentiles of ET distributions used for nuclear geometry characterization by centrality definition—7 percentile, 4 percentile, 2 percentile, 1 percentile, 0.5 percentile—the effect of this variation in shape on the measured projectile Ap dependence for 16O, 28Si, 197Au projectiles on an Au target is small for the ranges of δη and percentile examined. The ET distributions for p+Au and p+Be change in shape with δη; but in each δη interval the shapes of the p+Au and p+Be distributions remain indentical with each other—a striking confirmation of the absence of multiple-collision effects at midrapidity at AGS energies. The validity of the nuclear geometry characterization versus δη is illustrated by plots of the ET(δη) distribution in each δη interval in units of the measured 〈ET(δη)〉p+Au in the same δη interval for p+Au collisions. These plots, in the physically meaningful units of “number of average p+Au collisions,” are nearly universal as a function of δη, confirming that the reaction dynamics for ET production at midrapidity at AGS energies is governed by the number of projectile participants and can be well characterized by measurements in apertures as small as Δφ=π, δη=0.3.

0 data tables match query

Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

0 data tables match query

Rapidity dependence of the proton-to-pion ratio in Au+Au and p+p collisions at sqrt(s_NN) = 62.4 and 200 GeV

The BRAHMS collaboration Arsene, I.G. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 684 (2010) 22-27, 2010.
Inspire Record 834310 DOI 10.17182/hepdata.89450

The proton-to-pion ratios measured in the BRAHMS experiment for Au+Au and p+p collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV are presented as a function of transverse momentum and collision centrality at selected pseudorapidities in the range of 0 to 3.8. A strong pseudorapidity dependence of these ratios is observed. We also compare the magnitude and p_T-dependence of the p/pi ratios measured in Au+Au collisions at \rootsnn{200} and $\eta \approx 2.2$ with the same ratio measured at \rootsnn{62.4} and $\eta = 0$. The great similarity found between these ratios throughout the whole p_T range (up to 2.2 GeV/$c$) is consistent with particle ratios in A+A collisions being described with grand-canonical distributions characterized by the baryo-chemical potential \mibn. At the collision energy of 62.4 GeV, we have observed a unique point in pseudorapidity, $\eta = 3.2$, where the p/pi+ ratio is independent of the collision system size in a wide p_T-range of $0.3 \le p_{T} \le 1.8$ GeV/$c$.

0 data tables match query

Nuclear stopping in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 93 (2004) 102301, 2004.
Inspire Record 636579 DOI 10.17182/hepdata.89443

Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.

0 data tables match query

Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 88 (2002) 202301, 2002.
Inspire Record 567754 DOI 10.17182/hepdata.89441

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and N_ch(-4.7&lt;= eta &lt;= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively, relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around mid-rapidity. These results constrain current models of particle production at the highest RHIC energy.

0 data tables match query

Centrality dependence of kaon yields in Si + A and Au + Au collisions at the AGS.

The E-802 & E-866 collaborations Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Rev.C 60 (1999) 044904, 1999.
Inspire Record 496863 DOI 10.17182/hepdata.31369

Charged kaon production has been measured in Si+Al and Si+Au collisions at 14.6 A GeV/c, and Au+Au collisions at 11.1 A GeV/c by Experiments 859 and 866 (the E--802 Collaboration) at the BNL AGS. Invariant transverse mass spectra and rapidity distributions for both K+ and K- are presented. The centrality dependence of rapidity-integrated kaon yields is studied. Strangeness enhancement is observed as an increase in the slope of the kaon yield with the total number of participants as well as the yield per participant. The enhancement starts with peripheral Si+Al and Si+Au collisions (relative to N+N) and appears to saturate for a moderate number of participating nucleons in Si+Au collisions. It is also observed to increase slowly with centrality in Au+Au collisions, to a level in the most central Au+Au collisions that is greater than that found in central Si+A collisions. The enhancement factor for $K^+$ production are 3.0 +-0.2(stat.) +-0.4(syst.) and 4.0 +-0.3(stat.) +-0.5(syst.), respectively, for the most central 7% Si+Au collisions and the most central 4% Au+Au collisions relative to N+N at the correponding beam energy.

0 data tables match query

Rapidity dependence of deuteron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 83 (2011) 044906, 2011.
Inspire Record 856692 DOI 10.17182/hepdata.89452

We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.

0 data tables match query

Charged meson rapidity distributions in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 94 (2005) 162301, 2005.
Inspire Record 647076 DOI 10.17182/hepdata.89445

We have measured rapidity densities dN/dy of pions and kaons over a broad rapidity range (-0.1 < y < 3.5) for central Au+Au collisions at sqrt(snn) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+) and 242 +/- 4 +/- 19 (K-). The systematics of the strange to non--strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau--Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.

0 data tables match query

Centrality dependence of charged-particle pseudorapidity distributions from d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 94 (2005) 032301, 2005.
Inspire Record 643085 DOI 10.17182/hepdata.89272

Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.

0 data tables match query

Rapidity Dependence of Charged Antiparticle-to-Particle Ratios in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 90 (2003) 102301, 2003.
Inspire Record 590481 DOI 10.17182/hepdata.110251

We present ratios of the numbers of charged antiparticles to particles (pions, kaons and protons) in Au + Au collisions at $\sqrt{s_{NN}}=200$ GeV as a function of rapidity in the range $y$=0-3. While the particle ratios at midrapidity are approaching unity, the $K^-/K^+$ and $\bar{p}/p$ ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from $\mu_B \approx 130$MeV at $y$=3 to $\mu_B \approx 25$MeV at $y$=0.

0 data tables match query