Measurements of jet charge with dijet events in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 131, 2017.
Inspire Record 1605749 DOI 10.17182/hepdata.79857

Jet charge is an estimator of the electric charge of a quark, antiquark, or gluon initiating a jet. It is based on the momentum-weighted sum of the electric charges of the jet constituents. Measurements of three charge observables of the leading jet in transverse momentum pT are performed with dijet events. The analysis is carried out with data collected by the CMS experiment at the CERN LHC in proton-proton collisions at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The results are presented as a function of the pT of the leading jet and compared to predictions from leading- and next-to-leading-order event generators combined with parton showers. Measured jet charge distributions, unfolded for detector effects, are reported, which expand on previous measurements of the jet charge average and standard deviation in pp collisions.

0 data tables match query

Measurement of the triple-differential dijet cross section in proton-proton collisions at sqrt(s) = 8 TeV and constraints on parton distribution functions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 746, 2017.
Inspire Record 1598460 DOI 10.17182/hepdata.79410

A measurement is presented of the triple-differential dijet cross section at a centre-of-mass energy of 8 TeV using 19.7 inverse femtobarns of data collected with the CMS detector in proton-proton collisions at the LHC. The cross section is measured as a function of the average transverse momentum, half the rapidity separation, and the boost of the two leading jets in the event. The cross section is corrected for detector effects and compared to calculations in perturbative quantum chromodynamics at next-to-leading order accuracy, complemented with electroweak and nonperturbative corrections. New constraints on parton distribution functions are obtained and the inferred value of the strong coupling constant is alpha[S](M[Z]) = 0.1199 +/- 0.0015 (exp) -0.0020 +0.0031 (theo), where M[Z] is the mass of the Z boson.

0 data tables match query