Nonperturbative transverse momentum broadening in dihadron angular correlations in $\sqrt{s_{NN}}=200$ GeV proton-nucleus collisions

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 99 (2019) 044912, 2019.
Inspire Record 1695272 DOI 10.17182/hepdata.141680

The PHENIX collaboration has measured high-$p_T$ dihadron correlations in $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The correlations arise from inter- and intra-jet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of $p_{\rm out}$, the transverse momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial and final state transverse momenta. These distributions are measured multi-differentially as a function of $x_E$, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side $p_{\rm out}$ widths, sensitive to fragmentation transverse momentum, show no significant broadening between $p$$+$Au, $p$$+$Al, and $p$$+$$p$. The away-side nonperturbative $p_{\rm out}$ widths are found to be broadened in $p$$+$Au when compared to $p$$+$$p$; however, there is no significant broadening in $p$$+$Al compared to $p$$+$$p$ collisions. The data also suggest that the away-side $p_{\rm out}$ broadening is a function of $N_{\rm coll}$, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial and final state transverse momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed.

0 data tables match query

Mid-rapidity neutral pion production in proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 241803, 2003.
Inspire Record 617784 DOI 10.17182/hepdata.41956

The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.

0 data tables match query

Deuteron and antideuteron production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 122302, 2005.
Inspire Record 651462 DOI 10.17182/hepdata.141740

The production of deuterons and antideuterons in the transverse momentum range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis comparing the deuteron and antideuteron spectra with those of protons and antiprotons, has been performed. The coalescence probability is equal for both deuterons and antideuterons and increases as a function of p_T, which is consistent with an expanding collision zone. Comparing (anti)proton yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/- 0.03, we estimate that n_bar/n = 0.64 +/- 0.04.

0 data tables match query

Mid-rapidity direct-photon production in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 71 (2005) 071102, 2005.
Inspire Record 676004 DOI 10.17182/hepdata.142391

A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is presented. A photon excess above background from pi^0 --> gamma+gamma, eta --> gamma+gamma, and other decays is observed in the transverse momentum range 5.5 < p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative QCD calculation. Within errors, good agreement is found between the QCD calculation and the measured result.

0 data tables match query

Heavy-quark production and elliptic flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 91 (2015) 044907, 2015.
Inspire Record 1296108 DOI 10.17182/hepdata.143115

We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity ($|y|<$ 0.35) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range $1<p_T^e<5$ GeV/$c$. The invariant yield per binary collision is slightly enhanced above the $p$$+$$p$ reference in Au$+$Au 0%--20%, 20%--40% and 40%--60% centralities at a comparable level. This may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss for heavy-quark production at this low beam energy. The $v_2$ of electrons from heavy-flavor decays is nonzero when averaged between $1.3<p_T^e<2.5$ GeV/$c$ from $0<{\rm centrality}<40$% collisions at $\sqrt{s_{_{NN}}}=62.4$ GeV. For 20%--40% centrality collisions, the $v_2$ at $\sqrt{s_{_{NN}}}=62.4$ GeV is smaller than that for heavy flavor decays at $\sqrt{s_{_{NN}}}=200$ GeV. The $v_2$ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than $v_2$ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at $\sqrt{s_{_{NN}}}=200$ GeV.

0 data tables match query

Direct-Photon Production in p+p Collisions at sqrt(s)=200 GeV at Midrapidity

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 86 (2012) 072008, 2012.
Inspire Record 1115828 DOI 10.17182/hepdata.143075

The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transverse-momentum range from 5.5--25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x_T, the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.

0 data tables match query

Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 122302, 2012.
Inspire Record 900818 DOI 10.17182/hepdata.144510

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.

0 data tables match query

Ground and excited charmonium state production in p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 85 (2012) 092004, 2012.
Inspire Record 899065 DOI 10.17182/hepdata.141377

We report on charmonium measurements [J/psi(1S), psi'(2S), and chi_c(1P)] in p+p collisions at sqrt(s)=200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi_c in the midrapidity region ($|\eta|<0.35$) is 9.6+/-2.4% and 32+/-9%, respectively. We also report new, higher statistics p_T and rapidity dependencies of the J/psi yield via dielectron decay in the same midrapidity range and at forward rapidity (1.2<|eta|<2.4) via dimuon decay. These results are compared with measurements from other experiments and discussed in the context of current charmonium production models.

0 data tables match query

Measurements of directed, elliptic, and triangular flow in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 94 (2016) 054910, 2016.
Inspire Record 1394897 DOI 10.17182/hepdata.146752

Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ produced at midrapidity in Cu+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $\sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(\varepsilon_n N_{\rm part}^{1/3})$.

0 data tables match query

Evolution of pi^0 suppression in Au+Au collisions from sqrt(s_NN) = 39 to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 152301, 2012.
Inspire Record 1107625 DOI 10.17182/hepdata.96533

Neutral-pion, pi^0, spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at sqrt(s_NN) = 39 and 62.4 GeV and compared to earlier measurements at 200 GeV in the 1<p_T<10 GeV/c transverse-momentum (p_T) range. The high-p_T tail is well described by a power law in all cases and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding p+p-collision spectra. The nuclear-modification factors (R_AA) show significant suppression and a distinct energy dependence at moderate p_T in central collisions. At high p_T, R_AA is similar for 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R_AA well at 200 GeV, fail to describe the 39 GeV data, raising the possibility that the relative importance of initial-state effects and soft processes increases at lower energies. A conclusion that the region where hard processes are dominant is reached only at higher p_T, is also supported by the x_T dependence of the x_T-scaling power-law exponent.

0 data tables match query