Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nature Phys. 13 (2017) 852-858, 2017.
Inspire Record 1512305 DOI 10.17182/hepdata.77761

Light-by-light scattering ($\gamma\gamma\rightarrow\gamma\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 $\mu$b$^{-1}$ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\gamma\gamma\rightarrow\gamma\gamma$ reaction. A total of 13 candidate events are observed with an expected background of 2.6$\pm$0.7 events. After background subtraction and analysis corrections, the fiducial cross section of the process $\textrm{Pb+Pb}\,(\gamma\gamma)\rightarrow \textrm{Pb}^{(\ast)}\textrm{+}\textrm{Pb}^{(\ast)}\,\gamma\gamma$, for photon transverse energy $E_{\mathrm{T}}>$3 GeV, photon absolute pseudorapidity $|\eta|<$2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 $\pm$ 24 (stat.) $\pm$ 17 (syst.) nb, which is in agreement with Standard Model predictions.

0 data tables match query

Measurement of Upsilon production in 7 TeV pp collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 052004, 2013.
Inspire Record 1204994 DOI 10.17182/hepdata.60219

Using 1.8 fb-1 of pp collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the di-muon decay mode. Total production cross sections for p_T<70 GeV and in the rapidity interval |Upsilon|<2.25 are measured to be 8.01+-0.02+-0.36+-0.31 nb, 2.05+-0.01+-0.12+-0.08 nb, 0.92+-0.01+-0.07+-0.04 nb respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times di-muon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum p_T and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame the cross section may vary by approximately +-20%. If a non-trivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of two or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this dataset.

0 data tables match query

Measurement of the inclusive jet cross-sections in proton--proton collisions at $\sqrt{s}= $8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 020, 2017.
Inspire Record 1604271 DOI 10.17182/hepdata.76967

Inclusive jet production cross-sections are measured in proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=$8 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The total integrated luminosity of the analysed data set amounts to $20.2$ fb$^{-1}$. Double-differential cross-sections are measured for jets defined by the anti-$k_{t}$ jet clustering algorithm with radius parameters of $R=0.4$ and $R=0.6$ and are presented as a function of the jet transverse momentum, in the range between 70 GeV and 2.5 TeV and in six bins of the absolute jet rapidity, between 0 and 3.0. The measured cross-sections are compared to predictions of quantum chromodynamics, calculated at next-to-leading order in perturbation theory, and corrected for non-perturbative and electroweak effects. The level of agreement with predictions, using a selection of different parton distribution functions for the proton, is quantified. Tensions between the data and the theory predictions are observed.

0 data tables match query

Measurement of the cross section for inclusive isolated-photon production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 770 (2017) 473-493, 2017.
Inspire Record 1510441 DOI 10.17182/hepdata.79798

Inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb$^{-1}$. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

0 data tables match query

Measurement of internal structure of jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 379, 2017.
Inspire Record 1511869 DOI 10.17182/hepdata.77789

The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

0 data tables match query

Measurement of charged-particle distributions sensitive to the underlying event in $\sqrt{s} = 13$ TeV proton-proton collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2017) 157, 2017.
Inspire Record 1509919 DOI 10.17182/hepdata.76730

We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb$^{-1}$. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.

0 data tables match query

Studies of $Z\gamma$ production in association with a high-mass dijet system in $pp$ collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 07 (2017) 107, 2017.
Inspire Record 1598259 DOI 10.17182/hepdata.77542

The production of a $Z$ boson and a photon in association with a high-mass dijet system is studied using 20.2fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total $pp \to Z\gamma j j$ cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes $VV \to Z\gamma$. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory.

0 data tables match query

Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The TOTEM & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-21-004, 2024.
Inspire Record 2752118 DOI 10.17182/hepdata.145998

The central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13\TeV is examined, based on data collected in a special high-$\beta^*$ run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, $m_{\pi^+\pi^-}$$\lt$ 0.7 GeV or $m_{\pi^+\pi^-}$$\gt$ 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and $m_{\pi^+\pi^-}$ are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities $\lvert y\rvert$$\lt$ 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton.

0 data tables match query

Rapidity gap cross sections measured with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 72 (2012) 1926, 2012.
Inspire Record 1084540 DOI 10.17182/hepdata.58497

Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.

0 data tables match query

Search for scalar bottom pair production with the ATLAS detector in pp Collisions at sqrt{s} = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 108 (2012) 181802, 2012.
Inspire Record 1081778 DOI 10.17182/hepdata.58516

The results of a search for pair production of the scalar partners of bottom quarks in 2.05 fb^-1 of pp collisions at sqrt{s} = 7 TeV using the ATLAS experiment are reported. Scalar bottoms are searched for in events with large missing transverse momentum and two jets in the final state, where both jets are identified as originating from a b-quark. In an R-parity conserving minimal supersymmetric scenario, assuming that the scalar bottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits are obtained in the tilde{b}_1 - tilde{chi}^0_1 mass plane such that for neutralino masses below 60 GeV scalar bottom masses up to 390 GeV are excluded.

0 data tables match query