Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 76 (2007) 051106, 2007.
Inspire Record 749394 DOI 10.17182/hepdata.142289

The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.

0 data tables match query

Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized $p+p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.Lett. 123 (2019) 122001, 2019.
Inspire Record 1725616 DOI 10.17182/hepdata.141938

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized $p^{\uparrow}+p$, $p^{\uparrow}+$Al and $p^{\uparrow}+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The measurements have been performed at forward rapidity ($1.4<\eta<2.4$) over the range of $1.8<p_{T}<7.0$ GeV$/c$ and $0.1<x_{F}<0.2$. We observed a positive asymmetry $A_{N}$ for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in $p^{\uparrow}$+$A$ collisions. These results reveal a nuclear dependence of charged hadron $A_N$ in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.

0 data tables match query

Azimuthal-angle dependence of charged-pion-interferometry measurements with respect to 2$^{\rm nd}$- and $3^{\rm rd}$-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 112 (2014) 222301, 2014.
Inspire Record 1279634 DOI 10.17182/hepdata.141895

Charged-pion-interferometry measurements were made with respect to the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event plane for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event planes. The results for the 2$^{\rm nd}$-order dependence indicate that the initial eccentricity is reduced during the medium evolution, but not reversed in the final state, which is consistent with previous results. In contrast, the results for the 3$^{\rm rd}$-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the 3$^{\rm rd}$-order oscillations are largely dominated by the dynamical effects from triangular flow.

0 data tables match query

Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

0 data tables match query

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

0 data tables match query