Measurement of the Transverse Momentum of Dielectron Pairs in Proton - Anti-Proton Collisions

Casey, Dylan Patrick ; Ferbel, Thomas ;
FERMILAB-THESIS-1998-35, 1997.
Inspire Record 454166 DOI 10.17182/hepdata.18470

We present a measurement of the transverse momentum distribution of dielectron pairs with invariant mass near the mass of the Z boson. The data were obtained using the DO detector during the 1994-1995 run of the Tevatron Co!lider at Fermilab. The data used in the measurement corresponds to an integrated luminosity of 108.5 $pb^{-1}$ The measurement is compared to current phenomenology for vector boson production in proton-antiproton interactions, and the results are found to be consistent with expectation from Quantum Chromodynamics (QCD).

0 data tables match query

Evidence for top quark production in nucleus-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 222001, 2020.
Inspire Record 1802092 DOI 10.17182/hepdata.93878

Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10$^{-6}$ seconds, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first-ever evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production ($\sigma_\mathrm{t\bar{t}}$) via the decay into charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, $\sigma_\mathrm{t\bar{t}} = $ 2.54 $^{+0.84}_{-0.74}$ and 2.03 $^{+0.71}_{-0.64}$ $\mu$b, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.

0 data tables match query

Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 797 (2019) 134826, 2019.
Inspire Record 1697838 DOI 10.17182/hepdata.95242

Evidence for the light-by-light scattering process, $\gamma\gamma$ $\to$ $\gamma\gamma$, in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is reported. The analysis is conducted using a data sample corresponding to an integrated luminosity of 390 $\mu$b$^{-1}$ recorded by the CMS experiment at the LHC. Light-by-light scattering processes are selected in events with two photons exclusively produced, each with transverse energy E$_\mathrm{T}^{\gamma}$ $>$ 2 GeV, pseudorapidity $|\eta^{\gamma}|$ $\lt$ 2.4, diphoton invariant mass $m^{\gamma\gamma}$ $\gt$ 5 GeV, diphoton transverse momentum $p_\mathrm{T}^{\gamma\gamma}$ $\lt$ 1 GeV, and diphoton acoplanarity below 0.01. After all selection criteria are applied, 14 events are observed, compared to expectations of 9.0 $\pm$ 0.9 (theo) events for the signal and 4.0 $\pm$ 1.2 (stat) for the background processes. The excess observed in data relative to the background-only expectation corresponds to a significance of 3.7 standard deviations, and has properties consistent with those expected for the light-by-light scattering signal. The measured fiducial light-by-light scattering cross section, $\sigma_\mathrm{fid} (\gamma\gamma$ $\to$ $\gamma\gamma) =$ 120 $\pm$ 46 (stat) $\pm$ 28 (syst) $\pm$ 12 (theo) nb, is consistent with the standard model prediction. The $m^{\gamma\gamma}$ distribution is used to set new exclusion limits on the production of pseudoscalar axion-like particles, via the $\gamma\gamma$ $\to$ a $\to$ $\gamma\gamma$ process, in the mass range $m_{\mathrm{a}} =$ 5-90 GeV.

0 data tables match query

t anti-t production cross-section in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Rev.D 67 (2003) 012004, 2003.
Inspire Record 586609 DOI 10.17182/hepdata.54899

Results are presented on a measurement of the ttbar pair production cross section in ppbar collisions at sqrt{s} = 1.8 TeV from nine independent decay channels. The data were collected by the Dzero experiment during the 1992-1996 run of the Fermilab Tevatron Collider. A total of 80 candidate events are observed with an expected background of 38.8 +- 3.3 events. For a top quark mass of 172.1 GeV/c^2, the measured cross section is 5.69 +- 1.21 (stat) +- 1.04 (sys) pb.

0 data tables match query

Search for bottom squarks in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 031101, 1999.
Inspire Record 496902 DOI 10.17182/hepdata.42120

We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.

0 data tables match query

J / psi production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 370 (1996) 239-248, 1996.
Inspire Record 415417 DOI 10.17182/hepdata.42319

We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.

0 data tables match query

Measurement of the top quark pair production cross-section in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 79 (1997) 1203-1208, 1997.
Inspire Record 442536 DOI 10.17182/hepdata.42194

We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb~-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c~2, we measure the ttbar production cross section to be 5.5+-1.8 pb.

0 data tables match query

W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

0 data tables match query

Search for scalar leptoquark pairs decaying to electrons and jets in anti-p p collisions

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 79 (1997) 4321-4326, 1997.
Inspire Record 446155 DOI 10.17182/hepdata.42172

We have searched for the pair production of first generation scalar leptoquarks in the eejj channel using the full data set (123 pb-1) collected with the D0 detector at the Fermilab Tevatron during 1992--1996. We observe no candidates with an expected background of approximately 0.4 events. Comparing the experimental 95% confidence level upper limit to theoretical calculations of the cross section with the assumption of a 100% branching fraction to eq, we set a lower limit on the mass of a first generation scalar leptoquark of 225 GeV/c^2. The results of this analysis rule out the interpretation of the excess of high Q^2 events at HERA as leptoquarks which decay exclusively to eq.

0 data tables match query

Second generation leptoquark search in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3618-3623, 1995.
Inspire Record 397099 DOI 10.17182/hepdata.42373

We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron $p\overline{p}$ collider at $\sqrt{s}$ = 1.8 TeV. This search is based on 12.7 pb$~{-1}$ of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio $\beta$ or to neutrino and quark with branching ratio $(1-\beta)$. We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c$~{2}$ for $\beta = 1 $ and 89 GeV/c$~{2}$ for $\beta = 0.5 $ at the 95\%\ confidence level.

0 data tables match query