Evidence for collective multi-particle correlations in pPb collisions

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 115 (2015) 012301, 2015.
Inspire Record 1345262 DOI 10.17182/hepdata.67530

The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in pPb and PbPb collisions over a wide pseudorapidity (eta) range based on correlations among six or more charged particles. The pPb data, corresponding to an integrated luminosity of 35 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semi-peripheral PbPb collision data at sqrt(s[NN])= 2.76 TeV, corresponding to an integrated luminosity of 2.5 inverse microbarns and covering a similar range of particle multiplicities as the pPb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the pPb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Delta[eta]) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a pPb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multi-particle dynamics of collision systems with a very small overlapping region.

0 data tables match query

Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

0 data tables match query

Search for Dijet Resonances in 7 TeV pp Collisions at CMS

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 105 (2010) 211801, 2010.
Inspire Record 871540 DOI 10.17182/hepdata.56737

A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 inverse pb collected by the CMS experiment at the LHC. Upper limits at the 95% confidence level (CL) are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% CL: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E_6 diquarks, in specific mass intervals. This extends previously published limits on these models.

0 data tables match query

Upsilon Production Cross-Section in pp Collisions at $sqrt{s}=7$ TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 83 (2011) 112004, 2011.
Inspire Record 882871 DOI 10.17182/hepdata.57722

The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

0 data tables match query

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

0 data tables match query

Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2012) 084, 2012.
Inspire Record 1089835 DOI 10.17182/hepdata.58503

The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

0 data tables match query

Observation of four top quark production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 847 (2023) 138290, 2023.
Inspire Record 2661880 DOI 10.17182/hepdata.138420

The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.7 $^{+3.7}_{-3.5}$ (stat) $^{+2.3}_{-1.9}$ (syst) fb, in agreement with the available standard model predictions.

0 data tables match query

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

0 data tables match query

J/psi and psi(2S) production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2012) 011, 2012.
Inspire Record 944755 DOI 10.17182/hepdata.58303

A measurement of the J/psi and psi(2S) production cross sections in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC is presented. The data sample corresponds to an integrated luminosity of 37 inverse picobarns. Using a fit to the invariant mass and decay length distributions, production cross sections have been measured separately for prompt and non-prompt charmonium states, as a function of the meson transverse momentum in several rapidity ranges. In addition, cross sections restricted to the acceptance of the CMS detector are given, which are not affected by the polarization of the charmonium states. The ratio of the differential production cross sections of the two states, where systematic uncertainties largely cancel, is also determined. The branching fraction of the inclusive B to psi(2S) X decay is extracted from the ratio of the non-prompt cross sections to be: BR(B to psi(2S) X) = (3.08 +/- 0.12(stat.+syst.) +/- 0.13(theor.) +/- 0.42(BR[PDG])) 10^-3

0 data tables match query

Searches for anomalous ttbar production in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 111 (2013) 211804, 2013.
Inspire Record 1253367 DOI 10.17182/hepdata.62178

Searches for anomalous top quark-antiquark production are presented, based on pp collisions at sqrt(s) = 8 TeV. The data, corresponding to an integrated luminosity of 19.7 inverse femtobarns, were collected with the CMS detector at the LHC. The observed ttbar invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements.

0 data tables match query