Production of Four Prong Final States in Photon-photon Collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 37 (1988) 28, 1988.
Inspire Record 261630 DOI 10.17182/hepdata.3824

Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.

0 data tables match query

EXCLUSIVE PRODUCTION OF PROTON - ANTI-PROTON PAIRS IN TWO PHOTON COLLISIONS AT PEP

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 36 (1987) 3506, 1987.
Inspire Record 246557 DOI 10.17182/hepdata.23356

We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16<Q2<1.6 (GeV/c)2].

0 data tables match query

Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

0 data tables match query

EXCLUSIVE PRODUCTION OF K+ K- pi+ pi- IN PHOTON-PHOTON COLLISIONS

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Armitage, J.C. ; et al.
Phys.Rev.Lett. 54 (1985) 2564, 1985.
Inspire Record 213402 DOI 10.17182/hepdata.20345

We report a measurement of the reaction γγ→K+K−π+π− in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ→φπ+π− and γγ→K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.

0 data tables match query

Production of omega mesons in proton proton collisions.

The COSY-TOF collaboration Abd El-Samad, S ; Abdel-Bary, M ; Brinkmann, K.-Th ; et al.
Phys.Lett.B 522 (2001) 16-21, 2001.
Inspire Record 559945 DOI 10.17182/hepdata.47093

The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.

0 data tables match query

Near-threshold eta meson production in proton proton collisions.

Smyrski, J. ; Wüstner, P. ; Balewski, J.T. ; et al.
Phys.Lett.B 474 (2000) 182-187, 2000.
Inspire Record 512406 DOI 10.17182/hepdata.28056

The production of eta mesons has been measured in the proton-proton interaction close to the reaction threshold using the COSY-11 internal facility at the cooler synchrotron COSY. Total cross sections were determined for eight different excess energies in the range from 0.5 MeV to 5.4 MeV. The energy dependence of the total cross section is well described by the available phase-space volume weighted by FSI factors for the proton-proton and proton-eta pairs.

0 data tables match query

Pion Pair Production From $\gamma \gamma$ Collisions at {PEP}

Smith, J.R. ; Burke, D.L. ; Abrams, G.S. ; et al.
Phys.Rev.D 30 (1984) 851, 1984.
Inspire Record 195739 DOI 10.17182/hepdata.23582

We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0<Q2<1.4 GeV2/c2, and obtained Γf0→γγ=2.52±0.13±0.38 keV at Q2≈0. The measured Q2 dependence is in agreement with the generalized vector-dominance model. The cross section for γγ→(π+π−+K+K−) in the mass region 1.6≤Mππ≤2.5 GeV/c2 has also been measured and the result compared with that expected from the QCD continuum.

0 data tables match query

Exclusive Proton - Anti-proton Production in Two Photon Collisions

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 108 (1982) 67-70, 1982.
Inspire Record 167679 DOI 10.17182/hepdata.31000

Production of proton-antiproton pairs by two-photon scattering has been observed at the electron-position storage ring PETRA. A total of eight proton-antiproton pairs have been identified using the time-of-flight technique. We have measured a total cross section of 4.5 ± 0.8 nb in the photon-photon c.m. energy range 2.0–2.6 GeV.

0 data tables match query

Measurement of $K^+ K^-$ Production in $\gamma \gamma$ Collisions

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Z.Phys.C 48 (1990) 183-190, 1990.
Inspire Record 284561 DOI 10.17182/hepdata.15151

The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).

0 data tables match query

Threshold hyperon production in proton proton collisions at COSY-11.

Rozek, T. ; Grzonka, D. ; Adam, H.-H. ; et al.
Phys.Lett.B 643 (2006) 251-256, 2006.
Inspire Record 722758 DOI 10.17182/hepdata.31512

Sigma+ hyperon production was measured at the COSY-11 spectrometer via the p p --> n K+ Sigma+ reaction at excess energies of Q = 13 MeV and Q = 60 MeV. These measurements continue systematic hyperon production studies via the p p --> p K+ Lambda/Sigma0 reactions where a strong decrease of the cross section ratio close-to-threshold was observed. In order to verify models developed for the description of the Lambda and Sigma0 production we have performed the measurement on the Sigma+ hyperon and found unexpectedly that the total cross section is by more than one order of magnitude larger than predicted by all anticipated models. After the reconstruction of the kaon and neutron four momenta, the Sigma+ is identified via the missing mass technique. Details of the method and the measurement will be given and discussed in view of theoretical models.

0 data tables match query