Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

0 data tables match query

Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2017) 142, 2017.
Inspire Record 1610629 DOI 10.17182/hepdata.79807

A search for physics beyond the standard model in final states with at least one photon, large transverse momentum imbalance, and large total transverse event activity is presented. Such topologies can be produced in gauge-mediated supersymmetry models in which pair-produced gluinos or squarks decay to photons and gravitinos via short-lived neutralinos. The data sample corresponds to an integrated luminosity of 35.9 inverse femtobarns of proton-proton collisions at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC in 2016. No significant excess of events above the expected standard model background is observed. The data are interpreted in simplified models of gluino and squark pair production, in which gluinos or squarks decay via neutralinos to photons. Gluino masses of up to 1.50-2.00 TeV and squark masses up to 1.30-1.65 TeV are excluded at 95% confidence level, depending on the neutralino mass and branching fraction.

0 data tables match query

Search for top squark pair production in pp collisions at sqrt(s)=13 TeV using single lepton events

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 019, 2017.
Inspire Record 1605128 DOI 10.17182/hepdata.79417

A search for top squark pair production in pp collisions at sqrt(s) = 13 TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.

0 data tables match query

Pseudorapidity distributions of charged hadrons in proton-lead collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 and 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2018) 045, 2018.
Inspire Record 1632453 DOI 10.17182/hepdata.80150

The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range $|\eta_\mathrm{lab}| <$ 2.4. The charged-hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range $|\eta_\mathrm{cm}| < 0.5$, the average charged-hadron multiplicity densities $<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta_{\mathrm{cm}}>$$\vert_{|\eta_{\mathrm{cm}}| < 0.5}$ are 17.31 $\pm$ 0.01 (stat) $\pm$ 0.59 (syst) and 20.10 $\pm$ 0.01 (stat) $\pm$ 0.85 (syst) at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.

0 data tables match query

Measurements of jet charge with dijet events in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2017) 131, 2017.
Inspire Record 1605749 DOI 10.17182/hepdata.79857

Jet charge is an estimator of the electric charge of a quark, antiquark, or gluon initiating a jet. It is based on the momentum-weighted sum of the electric charges of the jet constituents. Measurements of three charge observables of the leading jet in transverse momentum pT are performed with dijet events. The analysis is carried out with data collected by the CMS experiment at the CERN LHC in proton-proton collisions at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The results are presented as a function of the pT of the leading jet and compared to predictions from leading- and next-to-leading-order event generators combined with parton showers. Measured jet charge distributions, unfolded for detector effects, are reported, which expand on previous measurements of the jet charge average and standard deviation in pp collisions.

0 data tables match query

Search for Supersymmetry in $pp$ Collisions at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ in the Single-Lepton Final State Using the Sum of Masses of Large-Radius Jets

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 151802, 2017.
Inspire Record 1599402 DOI 10.17182/hepdata.79414

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt(s) = 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.

0 data tables match query

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 012007, 2018.
Inspire Record 1633588 DOI 10.17182/hepdata.79808

A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance $p_\mathrm{T}^\text{miss}$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the $p_\mathrm{T}^\text{miss}$, the scalar sum of jet transverse momenta, and the $m_{\mathrm{T2}}$ mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

0 data tables match query

Measurement of normalized differential t-tbar cross sections in the dilepton channel from pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2018) 060, 2018.
Inspire Record 1620050 DOI 10.17182/hepdata.81686

Normalized differential cross sections for top quark pair production are measured in the dilepton (e$^+$e$^-$, $\mu^+\mu^-$, and $\mu^\mp$e$^\pm$) decay channels in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.1 fb$^{-1}$ using the CMS detector at the LHC. The cross sections are measured differentially as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels. The results are compared to several Monte Carlo generators that implement calculations up to next-to-leading order in perturbative quantum chromodynamics interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to next-to-next-to-leading order.

0 data tables match query

Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at $\sqrt{s}=13\,\text {TeV} $

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 697, 2018.
Inspire Record 1680318 DOI 10.17182/hepdata.84709

Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range $|\eta| <$ 2.4 for charged particles with transverse momenta satisfying $p_\mathrm{T} >$ 0.5 GeV in proton-proton collisions at a center-of-mass energy of $\sqrt{s} =$ 13 TeV. Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic pp data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.

0 data tables match query

Charged-particle nuclear modification factors in XeXe collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2018) 138, 2018.
Inspire Record 1692558 DOI 10.17182/hepdata.85626

The differential yields of charged particles having pseudorapidity within $|\eta|<$ 1 are measured using xenon-xenon (XeXe) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV. The data, corresponding to an integrated luminosity of 3.42 $\mu$b$^{-1}$, were collected in 2017 by the CMS experiment at the LHC. The yields are reported as functions of collision centrality and transverse momentum, $p_\mathrm{T}$, from 0.5 to 100 GeV. A previously reported $p_\mathrm{T}$ spectrum from proton-proton collisions at $\sqrt{s}$ = 5.02 TeV is used for comparison after correcting for the difference in center-of-mass energy. The nuclear modification factors using this reference, $R_\mathrm{AA}^*$, are constructed and compared to previous measurements and theoretical predictions. In head-on collisions, the $R_\mathrm{AA}^*$ has a value of 0.17 in the $p_\mathrm{T}$ range of 6-8 GeV, but increases to approximately 0.7 at 100 GeV. Above $\approx$ 6 GeV, the XeXe data show a notably smaller suppression than previous results for lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV when compared at the same centrality (i.e., the same fraction of total cross section). However, the XeXe suppression is slightly greater than that for PbPb in events having a similar number of participating nucleons.

0 data tables match query