Measurement of top quark pair differential cross-sections in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 092003, 2016.
Inspire Record 1477814 DOI 10.17182/hepdata.75323

Measurements of normalized differential cross-sections of top quark pair ($t\bar t$) production are presented as a function of the mass, the transverse momentum and the rapidity of the $t\bar t$ system in proton-proton collisions at center-of-mass energies of $\sqrt{s}$ = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at 7 TeV and 20.2 fb$^{-1}$ at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a $b$-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of $t\bar t$ production. The results are consistent with the majority of predictions in a wide kinematic range.

0 data tables match query

Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 538, 2016.
Inspire Record 1404878 DOI 10.17182/hepdata.84154

Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.

0 data tables match query

Version 2
Measurement of lepton differential distributions and the top quark mass in $t\bar{t}$ production in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 804, 2017.
Inspire Record 1626105 DOI 10.17182/hepdata.77890

This paper presents single lepton and dilepton kinematic distributions measured in dileptonic $t\bar{t}$ events produced in 20.2 fb$^{-1}$ of $\sqrt{s}=8$ TeV $pp$ collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge $e\mu$ pair and one or two $b$-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of $m_t^{\rm pole}=173.2\pm 0.9\pm0.8\pm1.2$ GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

0 data tables match query

Measurement of the inclusive and fiducial $t\bar{t}$ production cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 487, 2018.
Inspire Record 1644099 DOI 10.17182/hepdata.81945

The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.

0 data tables match query

Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8 TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 032009, 2016.
Inspire Record 1397637 DOI 10.17182/hepdata.18108

The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for $t\bar{t}$ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-$k_t$ jet with radius parameter $R=1.0$ and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

0 data tables match query

A search for $t\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2015) 148, 2015.
Inspire Record 1373299 DOI 10.17182/hepdata.70548

A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\Gamma/m =$ 15% decaying to $t\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

0 data tables match query

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

0 data tables match query