Measurement of the production of high-$p_{\rm T}$ electrons from heavy-flavour hadron decays in Pb-Pb collisions at $\mathbf{\sqrt{\it s_{\rm{NN}}}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 771 (2017) 467-481, 2017.
Inspire Record 1487727 DOI 10.17182/hepdata.77817

Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy $\sqrt{s_{\rm NN}}=2.76$ TeV. The transverse momentum ($p_{\rm T}$) differential production yields at mid-rapidity were used to calculate the nuclear modification factor $R_{\rm AA}$ in the interval $3<p_{\rm T}< 18$ GeV/$c$. The $R_{\rm AA}$ shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad $p_{\rm T}$ interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC.

0 data tables match query

Measurement of an excess in the yield of J/$\psi$ at very low $p_{\rm T}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222301, 2016.
Inspire Record 1395296 DOI 10.17182/hepdata.72639

We report on the first measurement of an excess in the yield of J/$\psi$ at very low transverse momentum ($p_{\rm T}< 0.3$ GeV/$c$) in peripheral hadronic Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/$\psi$ in the rapidity range $2.5<y<4$ reaches about 7 (2) in the $p_{\rm T}$ range 0-0.3 GeV/$c$ in the 70-90% (50-70%) centrality class. The J/$\psi$ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/$\psi$ is the underlying physics mechanism. If confirmed, the observation of J/$\psi$ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the Quark-Gluon Plasma.

0 data tables match query

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

0 data tables match query

Prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ suppression at high transverse momentum in 5.02 TeV Pb+Pb collisions with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 762, 2018.
Inspire Record 1672469 DOI 10.17182/hepdata.103082

A measurement of $J/\psi$ and $\psi(2\mathrm{S})$ production is presented. It is based on a data sample from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV and $pp$ collisions at $\sqrt{s}$ = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of $0.42\mathrm{nb}^{-1}$ and $25\mathrm{pb}^{-1}$ in Pb+Pb and $pp$, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for $9 < p_{T}^{\mu\mu} < 40$ GeV in dimuon transverse momentum, and $-2.0 < y_{\mu\mu} < 2.0$ in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt $J/\psi$, as well as for prompt and non-prompt $\psi(2\mathrm{S})$, increasing with event centrality. The suppression of prompt $\psi(2\mathrm{S})$ is observed to be stronger than that of $J/\psi$, while the suppression of non-prompt $\psi(2\mathrm{S})$ is equal to that of the non-prompt $J/\psi$ within uncertainties, consistent with the expectation that both arise from \textit{b}-quarks propagating through the medium. Despite prompt and non-prompt $J/\psi$ arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.

0 data tables match query

Differential studies of inclusive J/$\psi$ and $\psi$(2S) production at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{{\textit s}_{_{NN}}}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 05 (2016) 179, 2016.
Inspire Record 1380192 DOI 10.17182/hepdata.73094

The production of J/$\psi$ and $\psi(2S)$ was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity ($2.5 < y < 4 $) down to zero transverse momentum ($p_{\rm T}$) in the dimuon decay channel. Inclusive J/$\psi$ yields were extracted in different centrality classes and the centrality dependence of the average $p_{\rm T}$ is presented. The J/$\psi$ suppression, quantified with the nuclear modification factor ($R_{\rm AA}$), was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/$\psi$ production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the $\psi(2S)$ suppression are provided via the ratio of $\psi(2S)$ over J/$\psi$ measured in pp and Pb-Pb collisions.

0 data tables match query

Production of muons from heavy-flavour hadron decays at high transverse momentum in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ and 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 820 (2021) 136558, 2021.
Inspire Record 1829412 DOI 10.17182/hepdata.110833

Measurements of the production of muons from heavy-flavour hadron decays in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = $5.02$ and $2.76$ TeV using the ALICE detector at the LHC are reported. The nuclear modification factor $R_{\rm AA}$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV is measured at forward rapidity ($2.5 < y <4$) as a function of transverse momentum $p_{\rm T}$ in central, semi-central, and peripheral collisions over a wide $p_{\rm T}$ interval, $3 < p_{\rm T} < 20$ GeV/$c$, in which muons from beauty-hadron decays are expected to take over from charm as the dominant source at high $p_{\rm T}$ ($p_{\rm T} > 7$ GeV/$c$). The $R_{\rm AA}$ shows an increase of the suppression of the yields of muons from heavy-flavour hadron decays with increasing centrality. A suppression by a factor of about three is observed in the $10\%$ most central collisions. The $R_{\rm AA}$ at $\sqrt{s_{\rm NN}}$ = 5.02 is similar to that at 2.76 TeV. The precise $R_{\rm AA}$ measurements have the potential to distinguish between model predictions implementing different mechanisms of parton energy loss in the high-density medium formed in heavy-ion collisions. They place important constraints for the understanding of the heavy-quark interaction with the hot and dense QCD medium.

0 data tables match query

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 790 (2019) 108-128, 2019.
Inspire Record 1673184 DOI 10.17182/hepdata.84819

Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.

0 data tables match query

Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 804 (2020) 135377, 2020.
Inspire Record 1759860 DOI 10.17182/hepdata.93923

The differential invariant yield as a function of transverse momentum ($p_\mathrm{T}$) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0-10%), semi-central (30-50%) and peripheral (60-80%) lead-lead (Pb-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\text{ TeV}$ in the $p_{\mathrm{T}}$ intervals 0.5-26 GeV/$c$ (0-10% and 30-50%) and 0.5-10 GeV/$c$ (60-80%). The production cross section in proton-proton (pp) collisions at $\sqrt{s}=5.02$ TeV was measured as well in $0.5<p_\mathrm{T}<10$ GeV/$c$ and it lies close to the upper band of perturbative QCD calculation uncertainties up to $p_\mathrm{T}=5$ GeV/$c$ and close to the mean value for larger $p_\mathrm{T}$. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon-nucleon collisions is evaluated by measuring the nuclear modification factor $R_{\mathrm{AA}}$. The measurement of the $R_{\mathrm{AA}}$ in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The $R_{\mathrm{AA}}$ shows a suppression with respect to unity at intermediate $p_\mathrm{T}$, which increases while moving towards more central collisions. Moreover, the measured $R_{\mathrm{AA}}$ is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low $p_\mathrm{T}$ in heavy-ion collisions at LHC.

0 data tables match query

Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 829 (2022) 137077, 2022.
Inspire Record 1914582 DOI 10.17182/hepdata.111123

Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.

0 data tables match query

Centrality and transverse momentum dependence of inclusive J/$\psi$ production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 805 (2020) 135434, 2020.
Inspire Record 1762353 DOI 10.17182/hepdata.94384

The inclusive J/$\psi$ meson production in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of $\sqrt{s_{\rm NN}}$ = 5.02 TeV at midrapidity ($|y|$ < 0.9) is reported by the ALICE Collaboration. The measurements are performed in the dielectron decay channel, as a function of event centrality and J/$\psi$ transverse momentum $p_{\rm T}$, down to $p_{\rm T}$ = 0 GeV/$c$. The J/$\psi$ mean transverse momentum $\langle p_{\rm T} \rangle$ and $r_{\rm AA}$ ratio, defined as $\langle p^{\rm 2}_{\rm T} \rangle_{\rm PbPb}/\langle p^{\rm 2}_{\rm T} \rangle_{\rm pp}$, are evaluated. Both observables show a centrality dependence decreasing towards central (head-on) collisions. The J/$\psi$ nuclear modification factor $R_{\rm AA}$ exhibits a strong $p_{\rm T}$ dependence with a large suppression at high $p_{\rm T}$ and an increase to unity for decreasing $p_{\rm T}$. When integrating over the measured momentum range $p_{\rm T}$ < 10 GeV/$c$, the J/$\psi$ $R_{\rm AA}$ shows a weak centrality dependence. Each measurement is compared with results at lower center-of-mass energies and with ALICE measurements at forward rapidity, as well as to theory calculations. All reported features of the J/$\psi$ production at low $p_{\rm T}$ are consistent with a dominant contribution to the J/$\psi$ yield originating from charm quark (re)combination.

0 data tables match query