$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

0 data tables match query

$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

0 data tables match query

$\psi(2S)$ suppression in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 132 (2024) 042301, 2024.
Inspire Record 2165947 DOI 10.17182/hepdata.145654

The production of the $\psi(2S)$ charmonium state was measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity ($2.5<y<4$). The measurement of the ratio of the inclusive production cross sections of the $\psi(2S)$ and J/$\psi$ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region $p_{\rm T}<12$ GeV/$c$. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio $[\sigma^{\psi(2S)}/\sigma^{J/\psi}]_{\rm{Pb-Pb}}/[\sigma^{\psi(2S)}/\sigma^{J/\psi}]_{\rm{pp}}$. It is found that in Pb-Pb collisions the $\psi(2S)$ is suppressed by a factor of $\sim 2$ with respect to the J/$\psi$. The $\psi(2S)$ nuclear modification factor $R_{\rm AA}$ was also obtained as a function of both centrality and $p_{\rm T}$. The results show that the $\psi(2S)$ resonance yield is strongly suppressed in Pb-Pb collisions, by a factor up to $\sim 3$ with respect to pp. Comparisons of cross section ratios with previous SPS findings by the NA50 experiment and of $R_{\rm AA}$ with higher-$p_{\rm T}$ results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC.

0 data tables match query

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

0 data tables match query

$\rm \Lambda_{c}^{+}$ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 202301, 2021.
Inspire Record 1829739 DOI 10.17182/hepdata.114213

The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2<p_{\rm T}<12$ GeV/$c$, exhibiting similarities with the light-flavour baryon-to-meson ratios ${\rm p}/\pi$ and $\Lambda/\mathrm {K^0_S}$. At low $p_{\rm T}$, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charm-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in $\mathrm {e^+e^-}$ and $\mathrm {e^-p}$ collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

0 data tables match query

A Measurement of $\pi^0 \pi^0$ Production in Two Photon Collisions

The Crystal Ball collaboration Marsiske, H. ; Antreasyan, D. ; Bartels, H.W. ; et al.
Phys.Rev.D 41 (1990) 3324, 1990.
Inspire Record 294492 DOI 10.17182/hepdata.22923

The reaction e+e−→e+e−π0π0 has been analyzed using 97 pb−1 of data taken with the Crystal Ball detector at the DESY e−e+ storage ring DORIS II at beam energies around 5.3 GeV. For the first time we have measured the cross section for γγ→π0π0 for π0π0 mvariant masses ranging from threshold to about 2 GeV. We measure an approximately flat cross section of about 10 nb for W=mπ0π0<0.8 GeV, which is below 0.6 GeV, in good agreement with a theoretical prediction based on an unitarized Born-term model. At higher invariant masses we observe formation of the f2(1270) resonance and a hint of the f0(975). We deduce the following two-photon widths: Γγγ(f2(1270))=3.19±0.16±0.280.29 keV and Γγγ(f0(975))<0.53 keV at 90% C.L. The decay-angular distributions show the π0π0 system to be dominantly spin 0 for W<0.7 GeV and spin 2, helicity 2 in the f2(1270) region, with helicity 0 contributing at most 22% (90% C.L.).

0 data tables match query

A Measurement of Inclusive pi0 Production at Large p(T) from p p Collisions at the CERN ISR

The CERN-Columbia-Oxford-Rockefeller & CCOR collaborations Angelis, A.L.S. ; Blumenfeld, Barry J. ; Camilleri, L. ; et al.
Phys.Lett.B 79 (1978) 505-510, 1978.
Inspire Record 132910 DOI 10.17182/hepdata.27381

The inclusive cross section for larger p T π 0 production near 90° in p-p collisions at the CERN ISR is presented for centre-of-mass energies 30.7, 53.1 and 62.4 GeV. The data are inconsistent with scaling of the form p T − n F ( x T ), with constant n or with n allowed to depend on x T = 2p T / s . For s = 53.1 and 62.4 GeV , the value of n found for 3.5 < p T < 7.0 GeV/ c is n = 8.0 ± 0.5, in agreement with previous experiments. However, for 7.5 < p T < 14.0 GeV/ c the value becomes n = 5.1 ± 0.4.

0 data tables match query

A Measurement of the Production of Massive $e^+ e^-$ Pairs in Proton Proton Collisions at $\sqrt{s}$=62.4 GeV

The CERN-Columbia-Oxford-Rockefeller & CCOR collaborations Angelis, A.L.S. ; Besch, H.J. ; Blumenfeld, Barry J. ; et al.
Phys.Lett.B 87 (1979) 398-402, 1979.
Inspire Record 142896 DOI 10.17182/hepdata.27278

An apparatus consisting of a superconducting solenoid magnet, cylindrical drift-chambers, and two arrays of lead-glass Čerenkov counters has been used at the CERN ISR to study the production of e + e − pairs of invariant mass above 6.5 GeV/ c 2 . Cross sections for the continuum and the ϒ family of resonances are presented, as well as the mean transverse momentum 〈 p T 〉 of the electron-positron pairs in the continuum and resonance region.

0 data tables match query

A Measurement of the t-tbar Cross Section in p-pbar Collisions at sqrt(s) = 1.96 TeV using Dilepton Events with a Lepton plus Track Selection

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112007, 2009.
Inspire Record 816726 DOI 10.17182/hepdata.63509

This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.

0 data tables match query

A Study of single W production in e+ e- collisions at S**(1/2) = 161-GeV to 183-GeV

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 462 (1999) 389-400, 1999.
Inspire Record 503551 DOI 10.17182/hepdata.49108

Single W production is studied in the data recorded with the ALEPH detector at LEP at centre-of-mass energies between 161 and 183 GeV. The cross section is measured to be σ W =0.41±0.17(stat.)±0.04(syst.) pb at 183 GeV, consistent with the Standard Model expectation. Limits on non-standard WW γ couplings are deduced as −1.6<κ γ <1.5 (λ γ =0) and −1.6<λ γ <1.6 (κ γ =1) at 95% C.L. A search for effectively invisible decays of the W boson in W pair production is performed, leading to an upper limit on the branching ratio of 1.3% ( Γ inv =27 MeV ) at 95% C.L.

0 data tables match query