Observation of exclusive charmonium production and $\gamma+\gamma$ to $\mu^+\mu^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 102 (2009) 242001, 2009.
Inspire Record 812821 DOI 10.17182/hepdata.55758

We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| < 0.6, with M(mumu) in [3.0,4.0] GeV/c2, and either no other particles, or one additional photon, detected. The J/psi and the psi(2S) are prominent, on a continuum consistent with the QED process gamma+gamma --> mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L.

0 data tables match query

$\Upsilon$ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 4358, 1995.
Inspire Record 398187 DOI 10.17182/hepdata.42349

We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.

0 data tables match query

Production of $\chi_{c1}$ and $\chi_{c2}$ in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 86 (2001) 3963-3968, 2001.
Inspire Record 557478 DOI 10.17182/hepdata.19422

We have measured the ratio of prompt production rates of the charmonium states χc1 and χc2 in 110pb−1 of pp¯ collisions at s=1.8TeV. The photon from their decay into J/ψγ is reconstructed through conversion into e+e− pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections σχc2σχc1=0.96±0.27(stat)±0.11(syst) for events with pT(J/ψ)>4.0GeV/c, |η(J/ψ)|<0.6, and pT(γ)>1.0GeV/c.

0 data tables match query

Production of $\Upsilon(1S)$ mesons from $\chi_b$ decays in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 84 (2000) 2094-2099, 2000.
Inspire Record 508395 DOI 10.17182/hepdata.50106

We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.

0 data tables match query

Measurement of $\sigma_{\chi_{c2}}{\cal B}(\chi_{c2} \to J/\psi \gamma)/\sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$ in $p \bar{p}$ Collisions at $\sqrt{s}$ = 1.96-TeV

The CDF collaboration Abulencia, A. ; Adelman, Jahred A. ; Affolder, T. ; et al.
Phys.Rev.Lett. 98 (2007) 232001, 2007.
Inspire Record 746743 DOI 10.17182/hepdata.57248

We measure the ratio of cross section times branching fraction, $R_p \equiv \sigma_{\chi_{c2}} {\cal B}(\chi_{c2} \to J/\psi \gamma)/ \sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$, in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. This measurement covers the kinematic range $p_T(J/\psi)>4.0$ GeV/$c$, $|\eta(J/\psi)| < 1.0$, and $p_T(\gamma)>1.0$ GeV/$c$. For events due to prompt processes, we find $R_p = 0.395\pm0.016(stat.)\pm0.015(sys.)$. This result represents a significant improvement in precision over previous measurements of prompt $\chi_{c1,2}$ hadroproduction.

0 data tables match query

Measurement of the cross section for $W^-$ boson production in association with jets in $p\bar{p}$ collisions at $\sqrt{s}$ = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 77 (2008) 011108, 2008.
Inspire Record 768579 DOI 10.17182/hepdata.42714

We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.

0 data tables match query

Ratios of multijet cross sections in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 1955-1960, 2001.
Inspire Record 532905 DOI 10.17182/hepdata.42971

We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.

0 data tables match query

Measurement of Upsilon production in 7 TeV pp collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 052004, 2013.
Inspire Record 1204994 DOI 10.17182/hepdata.60219

Using 1.8 fb-1 of pp collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the di-muon decay mode. Total production cross sections for p_T<70 GeV and in the rapidity interval |Upsilon|<2.25 are measured to be 8.01+-0.02+-0.36+-0.31 nb, 2.05+-0.01+-0.12+-0.08 nb, 0.92+-0.01+-0.07+-0.04 nb respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times di-muon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum p_T and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame the cross section may vary by approximately +-20%. If a non-trivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of two or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this dataset.

0 data tables match query

Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

0 data tables match query

Upsilon Production Cross-Section in pp Collisions at $\sqrt{s}$=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 83 (2011) 112004, 2011.
Inspire Record 882871 DOI 10.17182/hepdata.57722

The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

0 data tables match query