Search for new particles decaying into dijets in proton-antiproton collisions at sqrt(s) = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112002, 2009.
Inspire Record 805902 DOI 10.17182/hepdata.52937

We present a search for new particles whose decays produce two jets (dijets) using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb-1 collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude |y| < 1. These limits are used to determine the mass exclusions for the excited quark, axigluon, flavor-universal coloron, E6 diquark, color-octet technirho, W', and Z'.

0 data tables match query

Measurement of b-jet Shapes in Inclusive Jet Production in p anti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 78 (2008) 072005, 2008.
Inspire Record 787780 DOI 10.17182/hepdata.51360

We present a measurement of the shapes of b-jets using 300 pb-1 of data obtained with the upgraded Collider Detector at Fermilab (CDF II) in p pbar collisions at center of mass energy sqrt{s}=1.96 TeV. This measurement covers a wide transverse momentum range, from 52 to 300 GeV/c. Samples of heavy-flavor enhanced jets together with inclusive jets are used to extract the average shapes of b-jets. The b-jets are expected to be broader than inclusive jets. Moreover, b-jets containing a single b-quark are expected to be narrower than those containing a b bbar pair from gluon splitting. The measured b-jet shapes are found to be significantly broader than expected from the PYTHIA and HERWIG Monte Carlo simulations. This effect may arise from an underestimation of the fraction of b-jets originating from gluon splitting in these simulations.

0 data tables match query

Measurement of Cross Sections for b Jet Production in Events with a Z Boson in p-anti-p Collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 052008, 2009.
Inspire Record 806082 DOI 10.17182/hepdata.51885

A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.

0 data tables match query

Double parton scattering in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 56 (1997) 3811-3832, 1997.
Inspire Record 442259 DOI 10.17182/hepdata.42212

A strong signal for double parton (DP) scattering is observed in a 16pb−1 sample of p¯p→γ/π0+3jets+X data from the CDF experiment at the Fermilab Tevatron. In DP events, two separate hard scatterings take place in a single p¯p collision. We isolate a large sample of data (∼14000events) of which 53% are found to be DP. The process-independent parameter of double parton scattering, σeff, is obtained without reference to theoretical calculations by comparing observed DP events to events with hard scatterings in separate p¯p collisions. The result σeff=(14.5±1.7−2.3+1.7)mb represents a significant improvement over previous measurements, and is used to constrain simple models of parton spatial density. The Feynman x dependence of σeff is investigated and none is apparent. Further, no evidence is found for kinematic correlations between the two scatterings in DP events.

0 data tables match query

Properties of jets in Z boson events from 1.8-TeV anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 448-453, 1996.
Inspire Record 416570 DOI 10.17182/hepdata.42318

We present a study of events with Z bosons and hadronic jets produced in $\overline{p}p$ collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 $Z \rightarrow e~+e~-$ decays from 106 pb$~{-1}$ of integrated luminosity collected using the CDF detector at the Tevatron Collider. The Z $+ \ge n$ jet cross sections and jet production properties have been measured for n = 1 to 4. The data compare well to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.

0 data tables match query

Study of t anti-t production p anti-p collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

0 data tables match query

Properties of jets in W boson events from 1.8-TeV anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 4760-4765, 1997.
Inspire Record 448076 DOI 10.17182/hepdata.54006

We present a study of events with W bosons and hadronic jets produced in pbar p collisions at a center of mass energy of 1.8 TeV. The data consist of 51400 W^+/- -> e^+/- nu decay candidates from 108 pb^-1 of integrated luminosity collected with the CDF detector at the Tevatron Collider. The cross sections and jet production properties have been measured for W + \geq 1 to \geq 4 jet events. The data are compared to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated fragmentation.

0 data tables match query

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

0 data tables match query

Inclusive jet cross-section in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 438-443, 1996.
Inspire Record 415602 DOI 10.17182/hepdata.42298

The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.

0 data tables match query

W boson + jet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2296-2300, 1994.
Inspire Record 374152 DOI 10.17182/hepdata.42492

The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.

0 data tables match query