Multiplicity of charged secondaries emitted in association with neutral strange particles in antiproton nucleus collisions at 40-GeV/c.

Akhobadze, K.G. ; Grigalashvili, T.S. ; Chikovani, L.D. ; et al.
Phys.Atom.Nucl. 63 (2000) 834-838, 2000.
Inspire Record 533010 DOI 10.17182/hepdata.31228

In collisions of 40-GeV/c antiprotons with D, Li, C, S, Cu, and Pb nuclei, mean multiplicities of various secondary particles are investigated as functions of the mass number A. The mass-number dependence of the mean multiplicities of positively charged particles suggests that the effect of intranuclear cascades is strong for the emission of Λ hyperons, but that it is relatively weak for the emission of either K 0 or \(\bar \Lambda \). Also measured are the yields of various neutral strange particles with respect to those of charged secondaries.

0 data tables match query

Measurement of the top-quark mass using a leptonic invariant mass in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 019, 2023.
Inspire Record 2145514 DOI 10.17182/hepdata.91999

A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.

0 data tables match query