Measurements of differential jet cross sections in proton-proton collisions at sqrt(s)=7 TeV with the CMS detector

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 87 (2013) 112002, 2013.
Inspire Record 1208923 DOI 10.17182/hepdata.66887

Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV, corresponding to 5.0 inverse femtobarns of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-k$_t$ clustering algorithm with distance parameter R = 0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions.

0 data tables match query

Measurement of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ Cross Sections in $pp$ Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 727 (2013) 101-125, 2013.
Inspire Record 1225274 DOI 10.17182/hepdata.60518

The $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 $\pm$ 1.4 inverse picobarns of proton-proton collisions at $\sqrt{s}$ = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the $\Upsilon$ transverse momentum range $p_{t}^{\Upsilon} \lt$ 50GeV and rapidity range |$y^\Upsilon$| $\lt$ 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are \begin{equation*}\sigma(pp \to \Upsilon(1S) X) . B(\Upsilon(1S) \to \mu^+ \mu^-) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(2S) X) . B(\Upsilon(2S) \to \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(3S) X) . B(\Upsilon(3S) \to \mu^+ \mu^-) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04) nb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements.

0 data tables match query

J/psi and psi(2S) production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2012) 011, 2012.
Inspire Record 944755 DOI 10.17182/hepdata.58303

A measurement of the J/psi and psi(2S) production cross sections in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC is presented. The data sample corresponds to an integrated luminosity of 37 inverse picobarns. Using a fit to the invariant mass and decay length distributions, production cross sections have been measured separately for prompt and non-prompt charmonium states, as a function of the meson transverse momentum in several rapidity ranges. In addition, cross sections restricted to the acceptance of the CMS detector are given, which are not affected by the polarization of the charmonium states. The ratio of the differential production cross sections of the two states, where systematic uncertainties largely cancel, is also determined. The branching fraction of the inclusive B to psi(2S) X decay is extracted from the ratio of the non-prompt cross sections to be: BR(B to psi(2S) X) = (3.08 +/- 0.12(stat.+syst.) +/- 0.13(theor.) +/- 0.42(BR[PDG])) 10^-3

0 data tables match query

Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.

0 data tables match query

Measurement of the inclusive jet cross section in pp collisions at sqrt(s) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 265, 2016.
Inspire Record 1410826 DOI 10.17182/hepdata.72839

The double-differential inclusive jet cross section is measured as a function of jet transverse momentum pT and absolute rapidity y, using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of sqrt(s) = 2.76 TeV and corresponding to an integrated luminosity of 5.43 inverse picoboarns. Jets are reconstructed within the pT range of 74 to 592 GeV and the rapidity range |y| < 3.0. The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.

0 data tables match query

Study of Z production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV in the dimuon and dielectron decay channels

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 03 (2015) 022, 2015.
Inspire Record 1322726 DOI 10.17182/hepdata.66612

The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

0 data tables match query

Rapidity and transverse momentum dependence of inclusive J/psi production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 704 (2011) 442-455, 2011.
Inspire Record 897764 DOI 10.17182/hepdata.57452

The ALICE experiment at the LHC has studied inclusive J/$\psi$ production at central and forward rapidities in pp collisions at $\sqrt{s} = 7$ TeV. In this Letter, we report on the first results obtained detecting the J/$\psi$ through its dilepton decay into $e^+e^-$ and $\mu^+\mu^-$ pairs in the rapidity range |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero $p_{\rm T}$. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity $L_{\rm int}$ = 5.6 nb$^{-1}$ and the number of signal events is $N_{J/\psi}=352 \pm 32$ (stat.) $\pm$ 28 (syst.); the corresponding figures in the dimuon channel are $L_{\rm int}$ = 15.6 nb$^{-1}$ and $N_{J/\psi} = 1924 \pm 77$ (stat.) $\pm$ 144(syst.). The measured production cross sections are $\sigma_{J/\psi}$ (|y|<0.9) = 12.4 $\pm$ 1.1 (stat.) $\pm$ 1.8 (syst.) + 1.8 -2.7 (syst.pol.) $\mu$b and $\sigma_{J/\psi}$ (2.5<y<4) = 6.31 $\pm$ 0.25 (stat.) $\pm$ 0.76 (syst.) +0.95 -1.96 (syst.pol.) $\mu$b. The differential cross sections, in transverse momentum and rapidity, of the J/$\psi$ were also measured.

0 data tables match query

Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

0 data tables match query

Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 749 (2015) 187-209, 2015.
Inspire Record 1359450 DOI 10.17182/hepdata.68945

We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy sqrt(s)=8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

0 data tables match query

Measurement of the ratio of inclusive jet cross sections using the anti-kt algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 072006, 2014.
Inspire Record 1298810 DOI 10.17182/hepdata.68020

Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.

0 data tables match query