The Dijet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Anway, Carol E. ; et al.
Phys.Rev.Lett. 69 (1992) 2896-2900, 1992.
Inspire Record 336778 DOI 10.17182/hepdata.19809

The dijet angular distribution is measured in the Collider Detector at Fermilab. This measurement covers higher mass ranges and larger scattering angles than previously possible. Good agreement is observed between the data and both leading-order [O(αs2)] and next-to-leading order [O(αs3)] QCD calculations. A limit on quark compositeness of Λc>1.0 TeV is obtained.

0 data tables match query

The Jet pseudorapidity distribution in direct photon events in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 57 (1998) 1359-1365, 1998.
Inspire Record 453369 DOI 10.17182/hepdata.54263

We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.

0 data tables match query

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

0 data tables match query

Pseudorapidity distribution of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 751 (2015) 143-163, 2015.
Inspire Record 1384119 DOI 10.17182/hepdata.69375

The pseudorapidity distribution of charged hadrons in pp collisions at sqrt(s) =13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector (abs(eta)<2) using both hit pairs and reconstructed tracks. For central pseudorapidities (abs(eta)<0.5), the charged-hadron multiplicity density is dN/d(eta)[charged,abs(eta) < 0.5] = 5.49 +/- 0.01 (stat) +/- 0.17 (sys), a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energies.

0 data tables match query

Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 08 (2011) 141, 2011.
Inspire Record 919733 DOI 10.17182/hepdata.58223

A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.

0 data tables match query

Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at $\sqrt{s}$ = 8 TeV by the CMS and TOTEM experiments

The CMS & TOTEM collaborations Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 3053, 2014.
Inspire Record 1294140 DOI 10.17182/hepdata.66893

Pseudorapidity (eta) distributions of charged particles produced in proton-proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges abs(eta) < 2.2 and 5.3 < abs(eta) < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of 45 inverse microbarns. Measurements are presented for three event categories. The most inclusive category is sensitive to 91-96% of the total inelastic proton-proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions.

0 data tables match query

Pseudorapidity density of charged particles p-Pb collisions at sqrt(sNN) = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 032301, 2013.
Inspire Record 1190545 DOI 10.17182/hepdata.60099

The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV is presented. The average value at midrapidity is measured to be $16.81 \pm 0.71$ (syst.), which corresponds to $2.14 \pm 0.17$ (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at $\sqrt{s_{\rm NN}} = 0.2$ TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.

0 data tables match query

Two-pion femtoscopy in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, J. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 91 (2015) 034906, 2015.
Inspire Record 1342499 DOI 10.17182/hepdata.66872

We report the results of the femtoscopic analysis of pairs of identical pions measured in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. Femtoscopic radii are determined as a function of event multiplicity and pair momentum in three spatial dimensions. As in the pp collision system, the analysis is complicated by the presence of sizable background correlation structures in addition to the femtoscopic signal. The radii increase with event multiplicity and decrease with pair transverse momentum. When taken at comparable multiplicity, the radii measured in p-Pb collisions, at high multiplicity and low pair transverse momentum, are 10-20% higher than those observed in pp collisions but below those observed in A-A collisions. The results are compared to hydrodynamic predictions at large event multiplicity as well as discussed in the context of calculations based on gluon saturation.

0 data tables match query

Charged-particle multiplicities in proton-proton collisions at $\sqrt{s}$ = 0.9 to 8 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 33, 2017.
Inspire Record 1394854 DOI 10.17182/hepdata.77011

A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\eta|<2$, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\eta|<1$. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\eta|<$ 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

0 data tables match query

Centrality dependence of particle production in p-Pb collisions at $\sqrt{s_{\rm NN} }$= 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 91 (2015) 064905, 2015.
Inspire Record 1335350 DOI 10.17182/hepdata.68361

We report measurements of the primary charged particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined using different event activity estimators, i.e. charged particle multiplicities measured in three disjunct pseudorapidity regions as well as the energy measured at beam rapidity (zero-degree). The procedures to determine the centrality, quantified by the number of participants ($N_{\rm part}$), or the number of nucleon-nucleon binary collisions ($N_{\rm coll}$), are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available, generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy centrality classes, the $N_{\rm part}$ dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb-participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapitity of the number of participating nucleons is observed. Furthermore, at high-$p_{\rm T}$ the p-Pb spectra are found to be consistent with the pp spectra scaled by $N_{\rm coll}$ for all centrality classes. Our results represent valuable input for the study of the event activity dependence of hard probes in p-Pb collision and, hence, help to establish baselines for the interpretation of the Pb-Pb data.

0 data tables match query