Pseudorapidity distribution of charged particles in anti-p p collisions at s**(1/2) = 630-GeV

Harr, R ; Liapis, C ; Karchin, P ; et al.
Phys.Lett.B 401 (1997) 176-180, 1997.
Inspire Record 440823 DOI 10.17182/hepdata.28295

Using a silicon vertex detector, we measure the charged particle pseudorapidity distribution over the range 1.5 to 5.5 using data collected from PbarP collisions at root s = 630 GeV. With a data sample of 3 million events, we deduce a result with an overall normalization uncertainty of 5%, and typical bin to bin errors of a few percent. We compare our result to the measurement of UA5, and the distribution generated by the Lund Monte Carlo with default settings. This is only the second measurement at this level of precision, and only the second measurement for pseudorapidity greater than 3.

0 data tables match query

Charged Particle Multiplicity Distributions in Proton Anti-proton Collisions at 540-{GeV} Center-of-mass Energy

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 123 (1983) 108-114, 1983.
Inspire Record 182553 DOI 10.17182/hepdata.30779

Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.

0 data tables match query

Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

0 data tables match query

Inclusive photon production at forward rapidities in proton-proton collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 75 (2015) 146, 2015.
Inspire Record 1328669 DOI 10.17182/hepdata.69495

The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities ($2.3 < \eta < 3.9$) in proton-proton collisions at three center-of-mass energies, $\sqrt{s}=0.9$, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2% $\pm$ 0.3% (stat) $\pm$ 8.8% (sys) and 61.2% $\pm$ 0.3% (stat) $\pm$ 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.

0 data tables match query

Effect of event selection on jetlike correlation measurement in $d$+Au collisions at $\sqrt{s_{\rm{NN}}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 743 (2015) 333-339, 2015.
Inspire Record 1335765 DOI 10.17182/hepdata.73235

Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.

0 data tables match query

J/psi production in Au Au collisions at s(NN)**(1/2) = 200-GeV at the Relativistic Heavy Ion Collider.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 69 (2004) 014901, 2004.
Inspire Record 619646 DOI 10.17182/hepdata.57253

First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.

0 data tables match query

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

0 data tables match query

Charged-particle multiplicity measurement with Reconstructed Tracks in pp Collisions at $\sqrt{s}$ = 0.9 and 7 TeV with ALICE at the LHC

The ALICE collaboration
ALICE-PUBLIC-2013-001, 2013.
Inspire Record 1387699 DOI 10.17182/hepdata.62030

This note describes the details of the analysis of charged-particle pseudorapidity densities and multiplicity distributions measured by the ALICE detector in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV in specific phase space regions. The primary goal of the analysis is to provide reference measurements for Monte Carlo tuning. The pseudorapidity range |h| < 0.8 is considered and a lower $p_T$ cut is applied, at 0.15, 0.5 GeV/c and at 1 GeV/c. The choice of such phase space regions to measure the charged-particle multiplicity allows a direct comparison with the analogous results obtained by other LHC collaborations, namely ATLAS and CMS. The class of events considered are those having at least one charged particle in the kinematical ranges just described. In the note, the analysis procedure is presented, together with the corrections applied to the data, and the systematic uncertainty evaluation. The comparison of the results with different Monte Carlo generators is also shown.

0 data tables match query

Charged particle multiplicity near mid-rapidity in central Au + Au collisions at S**(1/2) = 56-A/GeV and 130-A/GeV

The PHOBOS collaboration Back, B.B. ; Baker, M.D. ; Barton, D.S. ; et al.
Phys.Rev.Lett. 85 (2000) 3100-3104, 2000.
Inspire Record 530501 DOI 10.17182/hepdata.41732

We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\eta |_{|\eta|<1} = 408 \pm 12 {(stat)} \pm 30 {(syst)}$ at 56 AGeV and $555 \pm 12 {(stat)} \pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.

0 data tables match query

First proton--proton collisions at the LHC as observed with the ALICE detector: measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U ; et al.
Eur.Phys.J.C 65 (2010) 111-125, 2010.
Inspire Record 838352 DOI 10.17182/hepdata.53751

On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |$\eta$| < 0.5, we obtain dNch/deta = 3.10 $\pm$ 0.13 (stat.) $\pm$ 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 $\pm$ 0.15 (stat.) $\pm$ 0.25 (syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN SppS collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

0 data tables match query