Central Collisions of 800-{GeV} Protons With Ag / Br Nuclei in Nuclear Emulsion

The BATON ROUGE-KRAKOW-MOSCOW-TASHKENT collaboration Abduzhamilov, A. ; Barbier, L.M. ; Chernova, L.P. ; et al.
Phys.Rev.D 39 (1989) 86-91, 1989.
Inspire Record 280844 DOI 10.17182/hepdata.3813

Central collisions of 800-GeV protons with the heavy components of nuclear emulsion, Ag107 and Br80, have been investigated to determine the characteristics of small-impact-parameter collisions and, by comparison with the analysis of inclusive proton-emulsion inelastic interactions and inelastic proton-nucleon collisions, to study the dependence of the interaction process on the mean number of intranuclear collisions 〈ν〉. The data are also compared with the results obtained in proton-emulsion collisions, both central and inclusive, at 200 GeV. The variations in the secondary-particle multiplicities and the normalized pseudorapidity density correlate with 〈ν〉 and demonstrate that proton-nucleus interactions, both central and inclusive, can be described adequately by the incoherent superposition of proton-nucleon collisions.

0 data tables match query

Pseudorapidity density of charged particles p-Pb collisions at sqrt(sNN) = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 032301, 2013.
Inspire Record 1190545 DOI 10.17182/hepdata.60099

The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV is presented. The average value at midrapidity is measured to be $16.81 \pm 0.71$ (syst.), which corresponds to $2.14 \pm 0.17$ (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at $\sqrt{s_{\rm NN}} = 0.2$ TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.

0 data tables match query

Charged particle densities from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G ; Beavis, D ; Besliu, C ; et al.
Phys.Lett.B 523 (2001) 227-233, 2001.
Inspire Record 561518 DOI 10.17182/hepdata.110252

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.

0 data tables match query

Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 88 (2002) 202301, 2002.
Inspire Record 567754 DOI 10.17182/hepdata.89441

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and N_ch(-4.7&lt;= eta &lt;= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively, relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around mid-rapidity. These results constrain current models of particle production at the highest RHIC energy.

0 data tables match query

$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

0 data tables match query

The Dijet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Anway, Carol E. ; et al.
Phys.Rev.Lett. 69 (1992) 2896-2900, 1992.
Inspire Record 336778 DOI 10.17182/hepdata.19809

The dijet angular distribution is measured in the Collider Detector at Fermilab. This measurement covers higher mass ranges and larger scattering angles than previously possible. Good agreement is observed between the data and both leading-order [O(αs2)] and next-to-leading order [O(αs3)] QCD calculations. A limit on quark compositeness of Λc>1.0 TeV is obtained.

0 data tables match query

Evidence for color coherence in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 5562-5579, 1994.
Inspire Record 374155 DOI 10.17182/hepdata.42448

Color coherence effects in pp¯ collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multijet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlo programs that are substantially different with respect to the implementation of coherence.

0 data tables match query

Charged Particle Multiplicity Distributions in Oxygen - Nucleus Collisions at 60-{GeV} and 200-{GeV} Per Nucleon

The HELIOS collaboration Akesson, T. ; Almehed, S. ; Angelis, A.L.S. ; et al.
Nucl.Phys.B 333 (1990) 48-65, 1990.
Inspire Record 281287 DOI 10.17182/hepdata.33112

Multiplicity distributions of charged particles produced in the pseudorapidity range 0.9 < η lab < 5.5 were measured in oxygen-nucleus collisions for Al, Ag, and W target nuclei at incident energies of 60 and 200 GeV per nucleon. The multiplicity differential cross sections and the pseudorapidity distributions as a function of transverse energy are presented for the various target nuclei. The correlation between charged multiplicity and transverse energy is studied as a function of transverse energy. Data are compared with predictions of the IRIS and FRITIOF generators.

0 data tables match query

Charged Particle Multiplicity Distributions in Proton Anti-proton Collisions at 540-{GeV} Center-of-mass Energy

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 123 (1983) 108-114, 1983.
Inspire Record 182553 DOI 10.17182/hepdata.30779

Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.

0 data tables match query

Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

0 data tables match query

Centrality dependence of charged-particle pseudorapidity distributions from d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 94 (2005) 032301, 2005.
Inspire Record 643085 DOI 10.17182/hepdata.89272

Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.

0 data tables match query

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 7 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 345-354, 2010.
Inspire Record 852264 DOI 10.17182/hepdata.54795

The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy $\sqrt{s} = 7$ TeV, were measured in the central pseudorapidity region |$\eta$| < 1. Comparisons are made with previous measurements at $\sqrt{s}$ = 0.9 TeV and 2.36 TeV. At $\sqrt{s}$ = 7 TeV, for events with at least one charged particle in |$\eta$| < 1, we obtain dNch/deta = 6.01 $\pm$ 0.01 (stat.) $^{+0.20}_{-0.12}$ (syst.). This corresponds to an increase of 57.6% $\pm$ 0.4% (stat.) $^{+3.6}_{-1.8}$% (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.

0 data tables match query

Central Collisions of 14.6-{GeV}/nucleon, 60-{GeV}/nucleon, and 200-{GeV}/nucleon $^{16}$O Nuclei in Nuclear Emulsion

Barbier, L.M. ; Freier, P.S. ; Holynski, R. ; et al.
Phys.Rev.Lett. 60 (1988) 405-407, 1988.
Inspire Record 264260 DOI 10.17182/hepdata.2969

Central collisions of O16 nuclei with the Ag107 and Br80 nuclei in nuclear emulsion at 14.6, 60, and 200 GeV/nucleon are compared with proton-emulsion data at equivalent energies. The multiplicities of produced charged secondaries are consistent with the predictions of superposition models. At 200 GeV/nucleon the central particle pseudorapidity density is 58±2 for those events with multiplicities exceeding 200 particles.

0 data tables match query

Effect of event selection on jetlike correlation measurement in $d$+Au collisions at $\sqrt{s_{\rm{NN}}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 743 (2015) 333-339, 2015.
Inspire Record 1335765 DOI 10.17182/hepdata.73235

Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.

0 data tables match query

The Jet pseudorapidity distribution in direct photon events in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.D 57 (1998) 1359-1365, 1998.
Inspire Record 453369 DOI 10.17182/hepdata.54263

We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.

0 data tables match query

J/psi production in Au Au collisions at s(NN)**(1/2) = 200-GeV at the Relativistic Heavy Ion Collider.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 69 (2004) 014901, 2004.
Inspire Record 619646 DOI 10.17182/hepdata.57253

First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.

0 data tables match query

Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt{s} = 7 TeV with the TOTEM experiment

The TOTEM collaboration Antchev, G ; Atanassov, I. ; Avati, V. ; et al.
EPL 98 (2012) 31002, 2012.
Inspire Record 1115294 DOI 10.17182/hepdata.59403

The TOTEM experiment has measured the charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV for 5.3<|eta|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward eta region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ~3.4 GeV/c^2, corresponding to about 95% of the total inelastic cross-section. The dN_{ch}/deta has been found to decrease with |eta|, from 3.84 pm 0.01(stat) pm 0.37(syst) at |eta| = 5.375 to 2.38 pm 0.01(stat) pm 0.21(syst) at |eta| = 6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.

0 data tables match query

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

0 data tables match query

Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt(s) = 8 TeV using a displaced interaction point

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Eur.Phys.J.C 75 (2015) 126, 2015.
Inspire Record 1328627 DOI 10.17182/hepdata.72847

The the pseudorapidity density of charged particles dN$_{ch}$/d$\eta$ is measured by the TOTEM experiment in pp collisions at √s = 8 TeV within the range 3.9 < $\eta$ < 4.7 and −6.95 < $\eta$ < −6.9. Data were collected in a low intensity LHC run with collisions occurring at a distance of 11.25 m from the nominal interaction point. The data sample is expected to include 96-97% of the inelastic proton-proton interactions. The measurement reported here considers charged particles with $P_T$ > 0 MeV/c, produced in inelastic interactions with at least one charged particle in −7 < $\eta$ < −6 or 3.7< $\eta$ < 4.8. The dN$_{ch}$/d$\eta$ has been found to decrease with |$\eta$|, from 5.11 ± 0.73 at $\eta$ =3.95 to 1.81 ± 0.56 at $\eta$ = −6.925. Several MC generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

0 data tables match query

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

0 data tables match query

Charged particle multiplicity near mid-rapidity in central Au + Au collisions at S**(1/2) = 56-A/GeV and 130-A/GeV

The PHOBOS collaboration Back, B.B. ; Baker, M.D. ; Barton, D.S. ; et al.
Phys.Rev.Lett. 85 (2000) 3100-3104, 2000.
Inspire Record 530501 DOI 10.17182/hepdata.41732

We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\eta |_{|\eta|<1} = 408 \pm 12 {(stat)} \pm 30 {(syst)}$ at 56 AGeV and $555 \pm 12 {(stat)} \pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.

0 data tables match query

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, Kenneth ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 106 (2011) 032301, 2011.
Inspire Record 880049 DOI 10.17182/hepdata.57047

The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

0 data tables match query

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

0 data tables match query

Pseudorapidity distribution of charged hadrons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 751 (2015) 143-163, 2015.
Inspire Record 1384119 DOI 10.17182/hepdata.69375

The pseudorapidity distribution of charged hadrons in pp collisions at sqrt(s) =13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector (abs(eta)<2) using both hit pairs and reconstructed tracks. For central pseudorapidities (abs(eta)<0.5), the charged-hadron multiplicity density is dN/d(eta)[charged,abs(eta) < 0.5] = 5.49 +/- 0.01 (stat) +/- 0.17 (sys), a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energies.

0 data tables match query

First proton--proton collisions at the LHC as observed with the ALICE detector: measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U ; et al.
Eur.Phys.J.C 65 (2010) 111-125, 2010.
Inspire Record 838352 DOI 10.17182/hepdata.53751

On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |$\eta$| < 0.5, we obtain dNch/deta = 3.10 $\pm$ 0.13 (stat.) $\pm$ 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 $\pm$ 0.15 (stat.) $\pm$ 0.25 (syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN SppS collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

0 data tables match query