Rapidity and transverse momentum structure in pi+ and K+ collisions with Al and Au nuclei at 250-GeV/c

The EHS/NA22 collaboration Agababyan, N.M. ; Ajinenko, I.V. ; Belokopytov, Yu. A. ; et al.
Z.Phys.C 50 (1991) 361-372, 1991.
Inspire Record 302020 DOI 10.17182/hepdata.14979

An analysis is presented of the rapidity and transverse momentum distributions and of the nuclear stopping power in collisions ofπ+ andK+ mesons with Al and Au nuclei at 250 GeV/c. The experimental results are compared to predictions of the additive quark model and the dual parton model. The AQM offers an overall consistent description of the data in this experiment. The DPM reproduces reasonably well the rapidity spectra in the central and projectile fragmentation regions, but fails to describe the nuclear stopping power.

0 data tables match query

Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

0 data tables match query