The role of double parton collisions in soft hadron interactions.

Alexopoulos, T. ; Anderson, E.W. ; Biswas, N.N. ; et al.
Phys.Lett.B 435 (1998) 453-457, 1998.
Inspire Record 480349 DOI 10.17182/hepdata.27080

We have examined charged multiplicities arising from p − p and p− p ̄ collisions over the range of center of mass energies, s , from 30 GeV to 1800 GeV. Results from Tevatron experiment E735 support the presence of double parton interactions. These processes can be seen to account for a large fraction of the increase in the non single diffraction inelastic cross section from energies of about 200 GeV to 1800 GeV.

0 data tables match query

Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

0 data tables match query

Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

The ALICE collaboration Aamodt, K ; Abelev, B ; Abrahantes Quintana, A ; et al.
Phys.Rev.Lett. 105 (2010) 252302, 2010.
Inspire Record 877822 DOI 10.17182/hepdata.62277

We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|$\eta$|<0.8) and transverse momentum range 0.2< $p_{\rm T}$< 5.0 GeV/$c$. The elliptic flow signal v$_2$, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 $\pm$ 0.002 (stat) $\pm$ 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v$_2(p_{\rm T})$ reaches a maximum of 0.2 near $p_{\rm T}$ = 3 GeV/$c$. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

0 data tables match query

Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

0 data tables match query

Study of inclusive strange-baryon production and search for pentaquarks in two-photon collisions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Eur.Phys.J.C 49 (2007) 395-410, 2007.
Inspire Record 727262 DOI 10.17182/hepdata.51884

Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons in two-photon collisions with the L3 detector at LEP are presented. The inclusive differential cross sections for Lambda and Xi- are measured as a function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event is determined in the kinematic range 0.4 GeV &lt; pt&lt; 2.5 GeV, |eta| &lt; 1.2. Overall agreement with the theoretical models and Monte Carlo predictions is observed. A search for inclusive production of the pentaquark theta+(1540) in two-photon collisions through the decay theta+ -> proton K0s is also presented. No evidence for production of this state is found.

0 data tables match query

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 7 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 345-354, 2010.
Inspire Record 852264 DOI 10.17182/hepdata.54795

The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy $\sqrt{s} = 7$ TeV, were measured in the central pseudorapidity region |$\eta$| < 1. Comparisons are made with previous measurements at $\sqrt{s}$ = 0.9 TeV and 2.36 TeV. At $\sqrt{s}$ = 7 TeV, for events with at least one charged particle in |$\eta$| < 1, we obtain dNch/deta = 6.01 $\pm$ 0.01 (stat.) $^{+0.20}_{-0.12}$ (syst.). This corresponds to an increase of 57.6% $\pm$ 0.4% (stat.) $^{+3.6}_{-1.8}$% (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.

0 data tables match query

Soft and hard interactions in p anti-p collisions at s**(1/2) = 1800-GeV and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 072005, 2002.
Inspire Record 567774 DOI 10.17182/hepdata.68015

We present a study of pp¯ collisions at s=1800 and 630 GeV collected using a minimum bias trigger by the CDF experiment in which the data set is divided into two classes corresponding to “soft” and “hard” interactions. For each subsample, the analysis includes measurements of the multiplicity, transverse momentum (pT) spectrum, and the average pT and event-by-event pT dispersion as a function of multiplicity. A comparison of results shows distinct differences in the behavior of the two samples as a function of the center of mass (c.m.) energy. We find evidence that the properties of the soft sample are invariant as a function of c.m. energy.

0 data tables match query

K0(s) and Lambda0 production studies in p anti-p collisions at s**(1/2) = 1800 and 630-GeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 72 (2005) 052001, 2005.
Inspire Record 681320 DOI 10.17182/hepdata.42774

We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and <p_T> of K_s^0 and Lambda^0 on charged particle multiplicity are reported. Systematic comparisons are performed for the full sample of inelastic collisions, and for the low and high momentum transfer subsamples, at the two energies. The p_T distributions extend above 8 GeV/c, showing a <p_T> higher than previous measurements. The dependence of the mean K_s^0(Lambda^0) p_T on the charged particle multiplicity for the three samples shows a behavior analogous to that of charged primary tracks.

0 data tables match query

A Measurement of D* Production in Jets from anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 348, 1990.
Inspire Record 283351 DOI 10.17182/hepdata.19973

The production rate of charged D* mesons in jets has been measured in 1.8-TeV p¯p collisions at the Fermilab Tevatron with the Collider Detector at Fermilab. In a sample of approximately 32 300 jets with a mean transverse energy of 47 GeV obtained from an exposure of 21.1 nb−1, a signal corresponding to 25.0±7.5(stat)±2.0(syst) D*±→K∓π±π± events is seen above background. This corresponds to a ratio N(D*++D*−)/N(jet) =0.10±0.03±0.03 for D* mesons with fractional momentum z greater than 0.1.

0 data tables match query

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

0 data tables match query