First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

0 data tables match query

Weak Neutral Currents in e+ e- Collisions at s**(1/2)=29-GeV

Levi, M.E. ; Blocker, C.A. ; Strait, J. ; et al.
Phys.Rev.Lett. 51 (1983) 1941, 1983.
Inspire Record 191845 DOI 10.17182/hepdata.3281

The differential cross sections for lepton pair production in e+e− annihilation at 29 GeV have been measured and found to be in good agreement with the standard model of the electroweak interaction. With the assumption of e−μ−τ universality, the weak neutral-current couplings are determined to be ga2=0.23±0.05 and gv2=0.03±0.04.

0 data tables match query

Identified charged hadron production in p+p collisions at sqrt(s)=200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 83 (2011) 064903, 2011.
Inspire Record 886590 DOI 10.17182/hepdata.57021

Transverse momentum distributions and yields for $\pi^{\pm}$, $K^{\pm}$, $p$ and $\bar{p}$ in $p+p$ collisions at $\sqrt{s}$=200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data provide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter $T_{\rm inv}$, mean transverse momentum $<p_T>$ and yield per unit rapidity $dN/dy$ at each energy, and compare them to other measurements at different $\sqrt{s}$ in $p+p$ and $p+\bar{p}$ collisions. We also present the scaling properties such as $m_T$ scaling, $x_T$ scaling on the $p_T$ spectra between different energies. To discuss the mechanism of the particle production in $p+p$ collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.

0 data tables match query

Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

0 data tables match query

The Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2451-2456, 1999.
Inspire Record 473457 DOI 10.17182/hepdata.42154

We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.

0 data tables match query

Small angle J / psi production in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 35-40, 1999.
Inspire Record 473954 DOI 10.17182/hepdata.42141

This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.

0 data tables match query

Ratios of multijet cross-sections in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 1955-1960, 2001.
Inspire Record 532905 DOI 10.17182/hepdata.42971

We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.

0 data tables match query

Measurement of Elastic Scattering in Anti-proton - Proton Collisions at 52.8-{GeV} Center-of-mass Energy

The CERN-Naples-Pisa-Stony Brook collaboration Ambrosio, M. ; Anzivino, G. ; Barbarino, G. ; et al.
Phys.Lett.B 115 (1982) 495-502, 1982.
Inspire Record 178572 DOI 10.17182/hepdata.30888

We measured the differential cross section for p̄p and pp elastic scattering in the momentum-transfer range 0.01 <| t | < 1.0 GeV 2 at the CERN Intersecting Storage Rings with center-of-mass energy s = 52.8 GeV . Fitting the differential cross section with an exponential [ A exp ( bt )], we found b p p = 13.92 ± 0.59 GeV −2 for | t | < 0.05 GeV 2 , whilst for | t | > 0.09 GeV 2 , b p p = 10.68 ± 0.26 GeV −2 . Using the optical theorem, we obtained for the total cross section σ tot ( p p)= 44.86 ± 0.78 mb and, by integrating the differential cross section, we obtained for the total elastic cross section σ el ( p p) = 7.89 ± 0.28 mb . Calculations of σ tot combining elastic-rate and total-rate measurements are also given. All of these measurements were also performed for pp scattering at the same energy, and the results for both reactions are compared.

0 data tables match query

Deeply Virtual Compton Scattering and its Beam Charge Asymmetry in $e^\pm p$ Collisions at HERA

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Phys.Lett.B 681 (2009) 391-399, 2009.
Inspire Record 827347 DOI 10.17182/hepdata.54512

A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e^+ p and e^- p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 306 pb^-1, almost equally shared between both beam charges. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma* p system in the kinematic domain 6.5 &lt; Q^2 &lt; 80 GeV^2, 30 &lt; W &lt; 140 GeV and |t| &lt; 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. Using e^+ p and e^- p data samples, a beam charge asymmetry is extracted for the first time in the low Bjorken x kinematic domain. The observed asymmetry is attributed to the interference between Bethe-Heitler and deeply virtual Compton scattering processes. Experimental results are discussed in the context of two different models, one based on generalised parton distributions and one based on the dipole approach.

0 data tables match query

Spin alignment and violation of the OZI rule in exclusive $\omega$ and $\phi$ production in pp collisions

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alexeev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1078-1101, 2014.
Inspire Record 1298025 DOI 10.17182/hepdata.64185

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.

0 data tables match query