Measurement of the $ZZ$ Production Cross Section in $pp$ Collisions at $\sqrt{s}$ = 13 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 116 (2016) 101801, 2016.
Inspire Record 1409923 DOI 10.17182/hepdata.70866

The $ZZ$ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb$^{-1}$ of data recorded with the ATLAS detector at the Large Hadron Collider. The considered $Z$ boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for $Z$ bosons in the same mass range and of all decay modes, giving $16.7^{+2.2}_{-2.0}$(stat.)$^{+0.9}_{-0.7}$(syst.)$^{+1.0}_{-0.7}$(lumi.) pb. The results agree with standard model predictions.

0 data tables match query

Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

0 data tables match query

Search for scalar leptoquarks in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
New J.Phys. 18 (2016) 093016, 2016.
Inspire Record 1462258 DOI 10.17182/hepdata.73322

An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in $pp$ collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider, have been considered. An integrated luminosity of 3.2 fb$^{-1}$, corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 GeV and 1050 GeV (1160 GeV and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.

0 data tables match query

Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 092006, 2018.
Inspire Record 1654357 DOI 10.17182/hepdata.81626

A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.

0 data tables match query

Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

0 data tables match query

Search for bottom squark pair production in proton--proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005

The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.

0 data tables match query

Search for supersymmetry in events with four or more leptons in $\sqrt{s}=13$ TeV $pp$ collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032009, 2018.
Inspire Record 1667045 DOI 10.17182/hepdata.82585

Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb$^{-1}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a $Z$ boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively.

0 data tables match query

Combination of searches for Higgs boson pairs in $pp$ collisions at $\sqrt{s} = $13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135103, 2020.
Inspire Record 1738524 DOI 10.17182/hepdata.90521

This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbbb, bbWW, bb$\tau\tau$, WWWW, bb$\gamma \gamma$ and WW$\gamma\gamma$ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio ($ \kappa_{\lambda} $) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to $ -5.0 < \kappa_{\lambda} <12.0 $ ($ -5.8 < \kappa_{\lambda} <12.0 $). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.

0 data tables match query

Version 2
Search for diboson resonances with boson-tagged jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 777 (2018) 91-113, 2018.
Inspire Record 1616092 DOI 10.17182/hepdata.79162

Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 36.7 fb $^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The diboson system is reconstructed using pairs of large-radius jets with high transverse momentum and tagged as compatible with the hadronic decay of high-momentum $W$ or $Z$ bosons, using jet mass and substructure properties. The search is sensitive to diboson resonances with masses in the range 1.2-5.0 TeV. No significant excess is observed in any signal region. Exclusion limits are set at the 95% confidence level on the production cross section times branching ratio to dibosons for a range of theories beyond the Standard Model. Model-dependent lower limits on the mass of new gauge bosons are set, with the highest limit set at 3.5 TeV in the context of mass-degenerate resonances that couple predominantly to bosons.

0 data tables match query

Search for pairs of highly collimated photon-jets in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 012008, 2019.
Inspire Record 1692387 DOI 10.17182/hepdata.85728

Results of a search for the pair production of photon-jets$-$collimated groupings of photons$-$in the ATLAS detector at the Large Hadron Collider are reported. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enough to be identified in the electromagnetic calorimeter as a single, photonlike energy cluster. Data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7 fb$^{-1}$, were collected in 2015 and 2016. Candidate photon-jet pair production events are selected from those containing two reconstructed photons using a set of identification criteria much less stringent than that typically used for the selection of photons, with additional criteria applied to provide improved sensitivity to photon-jets. Narrow excesses in the reconstructed diphoton mass spectra are searched for. The observed mass spectra are consistent with the Standard Model background expectation. The results are interpreted in the context of a model containing a new, high-mass scalar particle with narrow width, $X$, that decays into pairs of photon-jets via new, light particles, $a$. Upper limits are placed on the cross section times the product of branching ratios $\sigma \times \mathcal{B}(X \rightarrow aa) \times \mathcal {B}(a \rightarrow \gamma \gamma)^{2}$ for 200 GeV $< m_{X} <$ 2 TeV and for ranges of $ m_a $ from a lower mass of 100 MeV up to between 2 and 10 GeV, depending upon $ m_X $. Upper limits are also placed on $\sigma \times \mathcal{B}(X \rightarrow aa) \times \mathcal {B}(a \rightarrow 3\pi^{0})^{2}$ for the same range of $ m_X $ and for ranges of $ m_a $ from a lower mass of 500 MeV up to between 2 and 10 GeV.

0 data tables match query