Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024912, 2023.
Inspire Record 2635688 DOI 10.17182/hepdata.130768

Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second ($v_{2}$) and third ($v_{3}$) order azimuthal anisotropies of $K_{S}^{0}$, $\phi$, $\Lambda$, $\Xi$ and $\Omega$ at mid-rapidity ($|y|<$1) in Au+Au collisions at $\sqrt{s_{\text{NN}}}$ = 54.4 GeV measured by the STAR detector. The $v_{2}$ and $v_{3}$ are measured as a function of transverse momentum and centrality. Their energy dependence is also studied. $v_{3}$ is found to be more sensitive to the change in the center-of-mass energy than $v_{2}$. Scaling by constituent quark number is found to hold for $v_{2}$ within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in $v_{2}$ and $v_{3}$ between baryons and anti-baryons are presented, and ratios of $v_{3}$/$v_{2}^{3/2}$ are studied and motivated by hydrodynamical calculations. The ratio of $v_{2}$ of $\phi$ mesons to that of anti-protons ($v_{2}(\phi)/v_{2}(\bar{p})$) shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton $v_{2}$.

0 data tables match query

Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

0 data tables match query

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

0 data tables match query

Scaling properties at freeze-out in relativistic heavy ion collisions

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 83 (2011) 034910, 2011.
Inspire Record 865572 DOI 10.17182/hepdata.104504

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62.4 GeV. The data are studied with hydrodynamically-motivated Blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au+Au and $pp$ collisions, the dependence of freeze-out parameters on the system size is also explored. This multi-dimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu+Cu collisions, which expands the system size dependence studies from Au+Au data with detailed measurements in the smaller system, shows that the bulk freeze-out properties of charged particles studied here scale with the total charged particle multiplicity at mid-rapidity, suggesting the relevance of initial state effects.

0 data tables match query

Inclusive charm production in two-photon collisions at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 453 (1999) 83-93, 1999.
Inspire Record 481163 DOI 10.17182/hepdata.49252

The cross section of charm production in γγ collisions σ(e + e − →e + e − c c ̄ X) is measured at LEP with the L3 detector at centre-of-mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semileptonic decays. The direct process γγ→c c ̄ is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon.

0 data tables match query

Study of Electron - Positron Collisions at the Highest {PETRA} Energy

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 85 (1979) 463-466, 1979.
Inspire Record 141976 DOI 10.17182/hepdata.27332

We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.

0 data tables match query

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

0 data tables match query

Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

0 data tables match query

Inclusive D*+- production in photon-photon collisions

The TPC/Two-Gamma collaboration Alston-Garnjost, M. ; Avery, R.E. ; Barker, A.R. ; et al.
Phys.Lett.B 252 (1990) 499-504, 1990.
Inspire Record 299662 DOI 10.17182/hepdata.29510

The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.

0 data tables match query

Lambda and Sigma0 pair production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 24-33, 2002.
Inspire Record 585621 DOI 10.17182/hepdata.48892

Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model.

0 data tables match query