Search for the dimuon decay of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 119 (2017) 051802, 2017.
Inspire Record 1599399 DOI 10.17182/hepdata.78379

A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

0 data tables match query

Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135069, 2020.
Inspire Record 1743838 DOI 10.17182/hepdata.96299

This Letter presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $36.1\,\mathrm{fb}^{-1}$. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95 % confidence-level upper limits on the lepton-flavour-violating branching ratios are $0.47\%$ ($0.34^{+0.13}_{-0.10}\,\%$) and $0.28\%$ ($0.37^{+0.14}_{-0.10}\,\%$) for $H\to e\tau$ and $H\to\mu\tau$, respectively.

0 data tables match query

Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 99 (2019) 092005, 2019.
Inspire Record 1704945 DOI 10.17182/hepdata.90686

A search is presented for the production of a Higgs boson in association with a single top quark, based on data collected in 2016 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The production cross section for this process is highly sensitive to the absolute values of the top quark Yukawa coupling, $y_t$, the Higgs boson coupling to vector bosons, $g_\mathrm{HVV}$, and, uniquely, to their relative sign. Analyses using multilepton signatures, targeting H $\to$ WW, H $\to$ $\tau\tau$, and H $\to$ ZZ decay modes, and signatures with a single lepton and a $\mathrm{b\overline{b}}$ pair, targeting the H $\to$ $\mathrm{b\overline{b}}$ decay, are combined with a reinterpretation of a measurement in the H $\to$ $\gamma\gamma$ channel to constrain $y_\mathrm{t}$. For a standard model-like value of $g_\mathrm{HVV}$, the data favor positive values of $y_\mathrm{t}$ and exclude values of $y_\mathrm{t}$ below about $-$0.9 $y_\mathrm{t}^\mathrm{SM}$.

0 data tables match query

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

0 data tables match query

Search for beyond the standard model Higgs bosons decaying into a $\mathrm{b\overline{b}}$ pair in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 113, 2018.
Inspire Record 1675818 DOI 10.17182/hepdata.86133

A search for Higgs bosons that decay into a bottom quark-antiquark pair and are accompanied by at least one additional bottom quark is performed with the CMS detector. The data analyzed were recorded in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV at the LHC, corresponding to an integrated luminosity of 35.7 fb$^{-1}$. The final state considered in this analysis is particularly sensitive to signatures of a Higgs sector beyond the standard model, as predicted in the generic class of two Higgs doublet models (2HDMs). No signal above the standard model background expectation is observed. Stringent upper limits on the cross section times branching fraction are set for Higgs bosons with masses up to 1300 GeV. The results are interpreted within several MSSM and 2HDM scenarios.

0 data tables match query

A search for the $Z\gamma$ decay mode of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 809 (2020) 135754, 2020.
Inspire Record 1795890 DOI 10.17182/hepdata.94315

A search for the $Z\gamma$ decay of the Higgs boson, with $Z$ boson decays into pairs of electrons or muons is presented. The analysis uses proton$-$proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector at the Large Hadron Collider. The observed data are consistent with the expected background with a $p$-value of 1.3%. An upper limit at 95% confidence level on the production cross-section times the branching ratio for $pp\to H\to Z\gamma$ is set at 3.6 times the Standard Model prediction while 2.6 times is expected in the presence of the Standard Model Higgs boson. The best-fit value for the signal yield normalised to the Standard Model prediction is $2.0^{+1.0}_{-0.9}$ where the statistical component of the uncertainty is dominant.

0 data tables match query

Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 688, 2021.
Inspire Record 1846987 DOI 10.17182/hepdata.101374

A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. Upper limits are derived on the production of a narrow heavy resonance Z', and a mass below 3.5 and 3.7 TeV is excluded at 95% confidence level in models where the heavy vector boson couples exclusively to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 TeV, respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.

0 data tables match query

Version 2
Measurements of $WH$ and $ZH$ production in the $H \rightarrow b\bar{b}$ decay channel in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 178, 2021.
Inspire Record 1805282 DOI 10.17182/hepdata.94800

Measurements of the Standard Model Higgs boson decaying into a $b\bar{b}$ pair and produced in association with a $W$ or $Z$ boson decaying into leptons, using proton-proton collision data collected between 2015 and 2018 by the ATLAS detector, are presented. The measurements use collisions produced by the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s} = $13 TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The production of a Higgs boson in association with a $W$ or $Z$ boson is established with observed (expected) significances of 4.0 (4.1) and 5.3 (5.1) standard deviations, respectively. Cross-sections of associated production of a Higgs boson decaying into bottom quark pairs with an electroweak gauge boson, $W$ or $Z$, decaying into leptons are measured as a function of the gauge boson transverse momentum in kinematic fiducial volumes. The cross-section measurements are all consistent with the Standard Model expectations, and the total uncertainties vary from 30% in the high gauge boson transverse momentum regions to 85% in the low regions. Limits are subsequently set on the parameters of an effective Lagrangian sensitive to modifications of the $WH$ and $ZH$ processes as well as the Higgs boson decay into $b\bar{b}$.

0 data tables match query

Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
Phys.Lett.B 819 (2021) 136412, 2021.
Inspire Record 1852325 DOI 10.17182/hepdata.102955

A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.

0 data tables match query

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

0 data tables match query