Rapidity dependence of deuteron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 83 (2011) 044906, 2011.
Inspire Record 856692 DOI 10.17182/hepdata.89452

We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.

0 data tables match query

Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 650 (2007) 219-223, 2007.
Inspire Record 729167 DOI 10.17182/hepdata.89447

We present spectra of charged pions and protons in 0-10% central Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV at mid-rapidity ($y=0$) and forward pseudorapidity ($\eta=2.2$) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both $y=0$ and $\eta=2.2$ exhibit suppression for charged pions but not for (anti-)protons at intermediate $p_T$. The $\bar{p}/\pi^-$ ratios have been measured up to $p_T\sim 3$ GeV/$c$ at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate $p_T$ range are (anti-)protons at both mid-rapidity and $\eta = 2.2$.

0 data tables match query

Production of Mesons and Baryons at High Rapidity and High Pt in Proton-Proton Collisions at sqrt(s) = 200 GeV

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 98 (2007) 252001, 2007.
Inspire Record 742956 DOI 10.17182/hepdata.41746

We present particle spectra for charged hadrons $\pi^\pm, K^\pm, p$ and $\bar{p}$ from pp collisions at $\sqrt{s}=200$ GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small $\bar{p}/p$ ratios.

0 data tables match query

Centrality dependent particle production at y = 0 and y approx. 1 in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 72 (2005) 014908, 2005.
Inspire Record 678407 DOI 10.17182/hepdata.89446

Particle production of identified charged hadrons, $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ in Au+Au collisions at $\sqrt(snn) =$ 200 GeV has been studied as a function of transverse momentum and collision centrality at $y=0$ and $y\sim1$ by the BRAHMS experiment at RHIC. Significant collective transverse flow at kinetic freeze-out has been observed in the collisions. The magnitude of the flow rises with the collision centrality. Proton and kaon yields relative to the pion production increase strongly as the transverse momentum increases and also increase with centrality. Particle yields per participant nucleon show a weak dependence on the centrality for all particle species. Hadron production remains relatively constant within one unit around midrapidity in Au+Au collisions at $\sqrt(snn) =$ 200 GeV.

0 data tables match query

On the evolution of the nuclear modification factors with rapidity and centrality in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 93 (2004) 242303, 2004.
Inspire Record 645789 DOI 10.17182/hepdata.89444

We report on a study of the transverse momentum dependence of nuclear modification factors $R_{dAu}$ for charged hadrons produced in deuteron + gold collisions at $\sqrt{s_{NN}=\unit[200]{GeV}$, as a function of collision centrality and of the pseudorapidity ($\eta = 0,1,2.2,3.2 $) of the produced hadrons. We find significant and systematic decrease of $R_{dAu}$ with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.

0 data tables match query

Nuclear stopping and rapidity loss in Au+Au collisions at sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 677 (2009) 267-271, 2009.
Inspire Record 810481 DOI 10.17182/hepdata.89449

Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0<y<3.1 from 0-10% central Au+Au collisions at sqrt{s_{NN}}=62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons N()p-N(pbar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y=1 the net-proton yield is roughly constant (dN/dy ~ 10),but rises to dN/dy ~25 at 2.3<y<3.1. The mean rapidity loss is 2.01 +-0.16 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed.

0 data tables match query

Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

0 data tables match query

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

0 data tables match query

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

0 data tables match query

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

0 data tables match query