Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 012301, 2020.
Inspire Record 1762362 DOI 10.17182/hepdata.127978

The first evidence of spin alignment of vector mesons ($K^{*0}$ and $\phi$) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element $\rho_{00}$ is measured at midrapidity ($|y| <$ 0.5) in Pb-Pb collisions at a center-of-mass energy ($\sqrt{s_{\rm NN}}$) of 2.76 TeV with the ALICE detector. $\rho_{00}$ values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum ($p_{\rm T} <$ 2 GeV/$c$) for $K^{*0}$ and $\phi$ at a level of 3$\sigma$ and 2$\sigma$, respectively. No significant spin alignment is observed for the $K^0_S$ meson (spin = 0) in Pb-Pb collisions and for the vector mesons in $pp$ collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination.

0 data tables match query

Kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 96 (2017) 064613, 2017.
Inspire Record 1621809 DOI 10.17182/hepdata.79128

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured 3D kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass ($m_{\mathrm{T}}$) scaling of source radii obtained from pion and kaon correlations. This $m_{\mathrm{T}}$ scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A $k_{\mathrm{T}}$ scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions.

0 data tables match query

Symmetry plane correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 576, 2023.
Inspire Record 2628969 DOI 10.17182/hepdata.141027

A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.

0 data tables match query

Multiplicity dependence of light-flavor hadron production in pp collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024906, 2019.
Inspire Record 1684320 DOI 10.17182/hepdata.84282

Comprehensive results on the production of unidentified charged particles, $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}$*(892)$^{0}$, $\rm{p}$, $\overline{\rm{p}}$, $\phi$(1020), $\Lambda$, $\overline{\Lambda}$, $\Xi^{-}$, $\overline{\Xi}^{+}$, $\Omega^{-}$ and $\overline{\Omega}^{+}$ hadrons in proton-proton (pp) collisions at $\sqrt{s}$ = 7 TeV at midrapidity ($|y| < 0.5$) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum ($p_{\rm{T}}$) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained $p_{\rm{T}}$ distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.

0 data tables match query

$\Lambda\rm{K}$ femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 103 (2021) 055201, 2021.
Inspire Record 1797451 DOI 10.17182/hepdata.104979

The first measurements of the scattering parameters of $\Lambda$K pairs in all three charge combinations ($\Lambda$K$^{+}$, $\Lambda$K$^{-}$, and $\Lambda\mathrm{K^{0}_{S}}$) are presented. The results are achieved through a femtoscopic analysis of $\Lambda$K correlations in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV recorded by ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the non-femtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the $\Lambda\rm{K}^{+}$ interaction and attractive in the $\Lambda\rm{K}^{-}$ interaction. The data hint that the and $\Lambda\rm{K}^{0}_{S}$ interaction is attractive, however the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs ($\rm s\overline{s}$ in $\Lambda$K$^{+}$ and $\rm u\overline{u}$ in $\Lambda$K$^{-}$) or from different net strangeness for each system (S = 0 for $\Lambda$K$^{+}$, and S = $-2$ for $\Lambda$K$^{-}$). Finally, the $\Lambda$K systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle $\Lambda$ and K source distributions.

0 data tables match query

Version 2
Global polarization of $\Lambda$ and $\overline{\Lambda}$ hyperons in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.C 101 (2020) 044611, 2020.
Inspire Record 1752507 DOI 10.17182/hepdata.94265

The global polarization of the $\Lambda$ and $\overline\Lambda$ hyperons is measured for Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum ($p_{\rm{T}}$) for the range of centrality 5-50%, $0.5 < p_{\rm{T}} <5$ GeV/$c$, and rapidity $|y|<0.5$. The hyperon global polarization averaged for Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 and 5.02 TeV is found to be consistent with zero, $\langle P_{\rm{H}}\rangle$ (%) $\approx$ - 0.01 $\pm$ 0.05 (stat.) $\pm$ 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at RHIC, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%.

0 data tables match query

Direct photon elliptic flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 789 (2019) 308-322, 2019.
Inspire Record 1672789 DOI 10.17182/hepdata.88050

The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the $e^{+}e^{-}$ pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct photon elliptic flow was extracted in the transverse momentum range $0.9 < p_{\rm T} < 6.2$ GeV/$c$. A comparison to RHIC data shows a similar magnitude of the measured direct-photon elliptic flow. Hydrodynamic and transport model calculations are systematically lower than the data, but are found to be compatible.

0 data tables match query

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

0 data tables match query

Charm production and fragmentation fractions at midrapidity in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 12 (2023) 086, 2023.
Inspire Record 2697877 DOI 10.17182/hepdata.145759

Measurements of the production cross sections of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{\ast +}}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, and ${\rm \Xi_{c}^{+}}$ charm hadrons at midrapidity in proton$-$proton collisions at $\sqrt{s}=13$ TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum ($p_{\rm T}$) are provided with improved precision and granularity. The ratios of $p_{\rm T}$-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-$x$ ($10^{-5}-10^{-4}$). The measurements of ${\rm \Lambda_{c}^{+}}$ (${\rm \Xi_{c}^{+}}$) baryon production extend the measured $p_{\rm T}$ intervals down to $p_{\rm T}=0(3)$~GeV$/c$. These measurements are used to determine the charm-quark fragmentation fractions and the ${\rm c\overline{c}}$ production cross section at midrapidity ($|y|<0.5$) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, ${\rm \Xi_{c}^{0}}$ and, for the first time, ${\rm \Xi_{c}^{+}}$, and of the strongly-decaying J/$psi$ mesons. The first measurements of ${\rm \Xi_{c}^{+}}$ and ${\rm \Sigma_{c}^{0,++}}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e$^+$e$^-$ and ep collisions. The ${\rm c\overline{c}}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.

0 data tables match query

Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 802 (2020) 135227, 2020.
Inspire Record 1733684 DOI 10.17182/hepdata.104932

The ALICE collaboration at the CERN LHC reports novel measurements of jet substructure in pp collisions at $\sqrt{s}$= 7 TeV and central Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Jet substructure of track-based jets is explored via iterative declustering and grooming techniques. We present the measurement of the momentum sharing of two-prong substructure exposed via grooming, the $z_{\rm{g}}$, and its dependence on the opening angle, in both pp and Pb-Pb collisions. We also present the first measurement of the distribution of the number of branches obtained in the iterative declustering of the jet, which is interpreted as the number of its hard splittings. In Pb-Pb collisions, we observe a suppression of symmetric splittings at large opening angles and an enhancement of splittings at small opening angles relative to pp collisions, with no significant modification of the number of splittings. The results are compared to predictions from various Monte Carlo event generators to test the role of important concepts in the evolution of the jet in the medium such as color coherence.

0 data tables match query