Study of B meson production in pPb collisions at sqrt(s_NN) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 032301, 2016.
Inspire Record 1390110 DOI 10.17182/hepdata.71407

The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.

0 data tables match query

Study of W boson production in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 750 (2015) 565-586, 2015.
Inspire Record 1353541 DOI 10.17182/hepdata.69232

The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 inverse nanobarns at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV, and as a function of the lepton pseudorapidity in the abs(eta[lab]) < 2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.

0 data tables match query

Measurement of Bose-Einstein Correlations in pp Collisions at sqrt(s)=0.9 and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 05 (2011) 029, 2011.
Inspire Record 884808 DOI 10.17182/hepdata.60018

Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.

0 data tables match query

Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.C 92 (2015) 034911, 2015.
Inspire Record 1347386 DOI 10.17182/hepdata.67151

A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pt and eta of both particles, and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at sqrt(s[NN]) = 2.76 TeV and pPb collisions at sqrt(s[NN]) = 5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pt and eta. When measured with particles of different pt, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different eta. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very high-multiplicity pPb collisions. The eta-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

0 data tables match query

Transverse momentum spectra of b jets in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 754 (2016) 59, 2016.
Inspire Record 1397180 DOI 10.17182/hepdata.72511

We present a measurement of b jet transverse momentum (pt) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 inverse nanobarns collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 +/- 0.15 (stat + syst pPb) +/- 0.27 (syst PYTHIA) averaged over all jets with pt between 55 and 400 GeV/c and with abs(eta[lab]) < 2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.

0 data tables match query

Principal-component analysis of two-particle azimuthal correlations in PbPb and pPb collisions at CMS

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 96 (2017) 064902, 2017.
Inspire Record 1618346 DOI 10.17182/hepdata.79057

For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from sqrt(s[NN]) = 2.76 TeV PbPb and sqrt(s[NN]) = 5.02 TeV pPb collisions collected by the CMS experiment at the LHC. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it has been shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on the breakdown of flow factorization in heavy ion collisions. The first two modes ("leading" and "subleading") of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of pt over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique has also been applied to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous studies of factorization is discussed.

0 data tables match query

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.C 104 (2021) 014903, 2021.
Inspire Record 1842843 DOI 10.17182/hepdata.114165

Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb$^{-1}$ of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the LHC. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the non-flow contribution to the correlation. Significant nonzero values of the second- and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions.

0 data tables match query

Measurement of prompt D0 meson azimuthal anisotropy in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 202301, 2018.
Inspire Record 1615780 DOI 10.17182/hepdata.78930

The prompt D$^0$ meson azimuthal anisotropy coefficients, $v_2$ and $v_3$, are measured at midrapidity ($|y| < 1.0$) in PbPb collisions at a center-of-mass energy $\sqrt{s_\mathrm{NN}} = $5.02 TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum ($p_\mathrm{T}$) range of 1 to 40 GeV/c, for central and midcentral collisions. The $v_2$ coefficient is found to be positive throughout the $p_\mathrm{T}$ range studied. The first measurement of the prompt D$^0$ meson $v_3$ coefficient is performed, and values up to 0.07 are observed for $p_\mathrm{T}$ around 4 GeV/c. Compared to measurements of charged particles, a similar $p_\mathrm{T}$ dependence, but smaller magnitude for $p_\mathrm{T} < $6 GeV/c, is found for prompt D$^0$ meson $v_2$ and $v_3$ coefficients. The results are consistent with the presence of collective motion of charm quarks at low $p_\mathrm{T}$ and a path length dependence of charm quark energy loss at high $p_\mathrm{T}$, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.

0 data tables match query

Strong constraints on jet quenching in centrality-dependent $p$+Pb collisions at 5.02 TeV from ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 072301, 2023.
Inspire Record 2090791 DOI 10.17182/hepdata.130943

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.

0 data tables match query

Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 846 (2023) 138154, 2023.
Inspire Record 2648097 DOI 10.17182/hepdata.139723

Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb$^{-1}$ of Pb+Pb data and 260 pb$^{-1}$ of $pp$ data, both at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, with the ATLAS detector. The process $pp \to \gamma$+jet+$X$ and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum ($p_\mathrm{T}$) above $50$ GeV and reported as a function of jet $p_\mathrm{T}$. This selection results in a sample of jets with a steeply falling $p_\mathrm{T}$ distribution that are mostly initiated by the showering of quarks. The $pp$ and Pb+Pb measurements are used to report the nuclear modification factor, $R_\mathrm{AA}$, and the fractional energy loss, $S_\mathrm{loss}$, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The $R_\mathrm{AA}$ and $S_\mathrm{loss}$ values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss.

0 data tables match query