Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072301, 2012.
Inspire Record 918779 DOI 10.17182/hepdata.95886

We report new STAR measurements of mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.

2 data tables match query

$K^0_S$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The uncertainties on the spectra points are statistical and systematic combined.

$\Lambda$ and $\bar{\Lambda}$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The $\Lambda$ and $\bar{\Lambda}$ yields have not been feed down subtracted from weak decays. The uncertainties on the spectra points are statistical and systematic combined.


Identified hadron compositions in p+p and Au+Au collisions at high transverse momenta at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072302, 2012.
Inspire Record 930463 DOI 10.17182/hepdata.95749

We report transverse momentum ($p_{T} \leq15$ GeV/$c$) spectra of $\pi^{\pm}$, $K^{\pm}$, $p$, $\bar{p}$, $K_{S}^{0}$, and $\rho^{0}$ at mid-rapidity in p+p and Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. Perturbative QCD calculations are consistent with $\pi^{\pm}$ spectra in p+p collisions but do not reproduce $K$ and $p(\bar{p})$ spectra. The observed decreasing antiparticle-to-particle ratios with increasing $p_T$ provide experimental evidence for varying quark and gluon jet contributions to high-$p_T$ hadron yields. The relative hadron abundances in Au+Au at $p_{T}{}^{>}_{\sim}8$ GeV/$c$ are measured to be similar to the p+p results, despite the expected Casimir effect for parton energy loss.

16 data tables match query

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $K^0_S$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\rho^0$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

More…

Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

35 data tables match query

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 222301, 2015.
Inspire Record 1373553 DOI 10.17182/hepdata.71502

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2\{2\}$ and $v_2\{4\}$, for charged hadrons from U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV and Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2\{2\}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2\{2\}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.

0 data tables match query

Charge-dependent directed flow in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 118 (2017) 012301, 2017.
Inspire Record 1481225 DOI 10.17182/hepdata.77581

We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.

0 data tables match query

Direct virtual photon production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 770 (2017) 451-458, 2017.
Inspire Record 1474129 DOI 10.17182/hepdata.77495

We report the direct virtual photon invariant yields in the transverse momentum ranges $1\!<\!p_{T}\!<\!3$ GeV/$c$ and $5\!<\!p_T\!<\!10$ GeV/$c$ at mid-rapidity derived from the dielectron invariant mass continuum region $0.10<M_{ee}<0.28$ GeV/$c^{2}$ for 0-80\% minimum-bias Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. A clear excess in the invariant yield compared to the number-of-binary-collisions ($N_{bin}$) scaled $p+p$ reference is observed in the $p_T$ range $1\!<\!p_{T}\!<\!3$ GeV/$c$. For $p_T\!>6$ GeV/$c$ the production follows $N_{bin}$ scaling. Model calculations with contributions from thermal radiation and initial hard parton scattering are consistent within uncertainties with the direct virtual photon invariant yield.

0 data tables match query

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

0 data tables match query

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

0 data tables match query

Third Harmonic Flow of Charged Particles in Au+Au Collisions at sqrtsNN = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014904, 2013.
Inspire Record 1210062 DOI 10.17182/hepdata.96234

We report measurements of the third harmonic coefficient of the azimuthal anisotropy, v_3, known as triangular flow. The analysis is for charged particles in Au+Au collisions at sqrtsNN = 200 GeV, based on data from the STAR experiment at the Relativistic Heavy Ion Collider. Two-particle correlations as a function of their pseudorapidity separation are fit with narrow and wide Gaussians. Measurements of triangular flow are extracted from the wide Gaussian, from two-particle cumulants with a pseudorapidity gap, and also from event plane analysis methods with a large pseudorapidity gap between the particles and the event plane. These results are reported as a function of transverse momentum and centrality. A large dependence on the pseudorapidity gap is found. Results are compared with other experiments and model calculations.

0 data tables match query

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

0 data tables match query